New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nf3an | GIF version |
Description: If x is not free in φ, ψ, and χ, it is not free in (φ ∧ ψ ∧ χ). (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfan.1 | ⊢ Ⅎxφ |
nfan.2 | ⊢ Ⅎxψ |
nfan.3 | ⊢ Ⅎxχ |
Ref | Expression |
---|---|
nf3an | ⊢ Ⅎx(φ ∧ ψ ∧ χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 936 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
2 | nfan.1 | . . . 4 ⊢ Ⅎxφ | |
3 | nfan.2 | . . . 4 ⊢ Ⅎxψ | |
4 | 2, 3 | nfan 1824 | . . 3 ⊢ Ⅎx(φ ∧ ψ) |
5 | nfan.3 | . . 3 ⊢ Ⅎxχ | |
6 | 4, 5 | nfan 1824 | . 2 ⊢ Ⅎx((φ ∧ ψ) ∧ χ) |
7 | 1, 6 | nfxfr 1570 | 1 ⊢ Ⅎx(φ ∧ ψ ∧ χ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∧ w3a 934 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: hb3an 1830 vtocl3gaf 2924 mob 3019 |
Copyright terms: Public domain | W3C validator |