| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfbid | GIF version | ||
| Description: If in a context x is not free in ψ and χ, it is not free in (ψ ↔ χ). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfbid.1 | ⊢ (φ → Ⅎxψ) |
| nfbid.2 | ⊢ (φ → Ⅎxχ) |
| Ref | Expression |
|---|---|
| nfbid | ⊢ (φ → Ⅎx(ψ ↔ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 609 | . 2 ⊢ ((ψ ↔ χ) ↔ ((ψ → χ) ∧ (χ → ψ))) | |
| 2 | nfbid.1 | . . . 4 ⊢ (φ → Ⅎxψ) | |
| 3 | nfbid.2 | . . . 4 ⊢ (φ → Ⅎxχ) | |
| 4 | 2, 3 | nfimd 1808 | . . 3 ⊢ (φ → Ⅎx(ψ → χ)) |
| 5 | 3, 2 | nfimd 1808 | . . 3 ⊢ (φ → Ⅎx(χ → ψ)) |
| 6 | 4, 5 | nfand 1822 | . 2 ⊢ (φ → Ⅎx((ψ → χ) ∧ (χ → ψ))) |
| 7 | 1, 6 | nfxfrd 1571 | 1 ⊢ (φ → Ⅎx(ψ ↔ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: nfbi 1834 nfeud2 2216 nfeqd 2504 nfiotad 4343 iota2df 4366 |
| Copyright terms: Public domain | W3C validator |