Proof of Theorem ax12olem6
Step | Hyp | Ref
| Expression |
1 | | hbn1 1730 |
. . . . 5
⊢ (¬ ∀x x = z →
∀x
¬ ∀x x = z) |
2 | | ax12olem6.1 |
. . . . 5
⊢ (¬ ∀x x = z →
(z = w
→ ∀x z = w)) |
3 | 1, 2 | hbim1 1810 |
. . . 4
⊢ ((¬ ∀x x = z →
z = w)
→ ∀x(¬ ∀x x = z →
z = w)) |
4 | | ax-17 1616 |
. . . 4
⊢ ((¬ ∀x x = z →
y = z)
→ ∀w(¬ ∀x x = z →
y = z)) |
5 | | equcom 1680 |
. . . . . 6
⊢ (z = w ↔
w = z) |
6 | | equequ1 1684 |
. . . . . 6
⊢ (w = y →
(w = z
↔ y = z)) |
7 | 5, 6 | syl5bb 248 |
. . . . 5
⊢ (w = y →
(z = w
↔ y = z)) |
8 | 7 | imbi2d 307 |
. . . 4
⊢ (w = y →
((¬ ∀x x = z → z =
w) ↔ (¬ ∀x x = z →
y = z))) |
9 | | ax12olem6.2 |
. . . 4
⊢ (¬ ∀x x = y →
(y = w
→ ∀x y = w)) |
10 | 3, 4, 8, 9 | dvelimhw 1849 |
. . 3
⊢ (¬ ∀x x = y →
((¬ ∀x x = z → y =
z) → ∀x(¬
∀x
x = z
→ y = z))) |
11 | 1 | 19.21h 1797 |
. . 3
⊢ (∀x(¬
∀x
x = z
→ y = z) ↔ (¬ ∀x x = z →
∀x
y = z)) |
12 | 10, 11 | syl6ib 217 |
. 2
⊢ (¬ ∀x x = y →
((¬ ∀x x = z → y =
z) → (¬ ∀x x = z →
∀x
y = z))) |
13 | 12 | pm2.86d 93 |
1
⊢ (¬ ∀x x = y →
(¬ ∀x x = z → (y =
z → ∀x y = z))) |