| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > hboprab3 | GIF version | ||
| Description: The abstraction variables in an operation class abstraction are not free. (Contributed by set.mm contributors, 22-Aug-2013.) |
| Ref | Expression |
|---|---|
| hboprab3 | ⊢ (w ∈ {〈〈x, y〉, z〉 ∣ φ} → ∀z w ∈ {〈〈x, y〉, z〉 ∣ φ}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oprab 5529 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {v ∣ ∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)} | |
| 2 | hbe1 1731 | . . . . 5 ⊢ (∃z(v = 〈〈x, y〉, z〉 ∧ φ) → ∀z∃z(v = 〈〈x, y〉, z〉 ∧ φ)) | |
| 3 | 2 | hbex 1841 | . . . 4 ⊢ (∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ) → ∀z∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)) |
| 4 | 3 | hbex 1841 | . . 3 ⊢ (∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ) → ∀z∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)) |
| 5 | 4 | hbab 2344 | . 2 ⊢ (w ∈ {v ∣ ∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)} → ∀z w ∈ {v ∣ ∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)}) |
| 6 | 1, 5 | hbxfreq 2457 | 1 ⊢ (w ∈ {〈〈x, y〉, z〉 ∣ φ} → ∀z w ∈ {〈〈x, y〉, z〉 ∣ φ}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 〈cop 4562 {coprab 5528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-oprab 5529 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |