New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hboprab | GIF version |
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by set.mm contributors, 22-Aug-2013.) |
Ref | Expression |
---|---|
hboprab.1 | ⊢ (φ → ∀wφ) |
Ref | Expression |
---|---|
hboprab | ⊢ (u ∈ {〈〈x, y〉, z〉 ∣ φ} → ∀w u ∈ {〈〈x, y〉, z〉 ∣ φ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 5529 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {v ∣ ∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)} | |
2 | ax-17 1616 | . . . . . . 7 ⊢ (v = 〈〈x, y〉, z〉 → ∀w v = 〈〈x, y〉, z〉) | |
3 | hboprab.1 | . . . . . . 7 ⊢ (φ → ∀wφ) | |
4 | 2, 3 | hban 1828 | . . . . . 6 ⊢ ((v = 〈〈x, y〉, z〉 ∧ φ) → ∀w(v = 〈〈x, y〉, z〉 ∧ φ)) |
5 | 4 | hbex 1841 | . . . . 5 ⊢ (∃z(v = 〈〈x, y〉, z〉 ∧ φ) → ∀w∃z(v = 〈〈x, y〉, z〉 ∧ φ)) |
6 | 5 | hbex 1841 | . . . 4 ⊢ (∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ) → ∀w∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)) |
7 | 6 | hbex 1841 | . . 3 ⊢ (∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ) → ∀w∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)) |
8 | 7 | hbab 2344 | . 2 ⊢ (u ∈ {v ∣ ∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)} → ∀w u ∈ {v ∣ ∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)}) |
9 | 1, 8 | hbxfreq 2457 | 1 ⊢ (u ∈ {〈〈x, y〉, z〉 ∣ φ} → ∀w u ∈ {〈〈x, y〉, z〉 ∣ φ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 〈cop 4562 {coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-oprab 5529 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |