New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbxfreq | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1568 for equivalence version. (Contributed by NM, 21-Aug-2007.) |
Ref | Expression |
---|---|
hbxfr.1 | ⊢ A = B |
hbxfr.2 | ⊢ (y ∈ B → ∀x y ∈ B) |
Ref | Expression |
---|---|
hbxfreq | ⊢ (y ∈ A → ∀x y ∈ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbxfr.1 | . . 3 ⊢ A = B | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (y ∈ A ↔ y ∈ B) |
3 | hbxfr.2 | . 2 ⊢ (y ∈ B → ∀x y ∈ B) | |
4 | 2, 3 | hbxfrbi 1568 | 1 ⊢ (y ∈ A → ∀x y ∈ A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: hboprab1 5560 hboprab2 5561 hboprab3 5562 hboprab 5563 |
Copyright terms: Public domain | W3C validator |