| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > hbra1 | GIF version | ||
| Description: x is not free in ∀x ∈ Aφ. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| hbra1 | ⊢ (∀x ∈ A φ → ∀x∀x ∈ A φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2620 | . 2 ⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) | |
| 2 | hba1 1786 | . 2 ⊢ (∀x(x ∈ A → φ) → ∀x∀x(x ∈ A → φ)) | |
| 3 | 1, 2 | hbxfrbi 1568 | 1 ⊢ (∀x ∈ A φ → ∀x∀x ∈ A φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-ral 2620 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |