NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfra1 GIF version

Theorem nfra1 2665
Description: x is not free in x Aφ. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfra1 xx A φ

Proof of Theorem nfra1
StepHypRef Expression
1 df-ral 2620 . 2 (x A φx(x Aφ))
2 nfa1 1788 . 2 xx(x Aφ)
31, 2nfxfr 1570 1 xx A φ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wnf 1544   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by:  nfra2  2669  r19.12  2728  ralbi  2751  ralcom2  2776  nfss  3267  ralidm  3654  nfii1  3999  dfiun2g  4000  ncfinraise  4482  fun11iun  5306  chfnrn  5400  ffnfv  5428  mpteq12f  5656  mpt2eq123  5662  fvmptss  5706
  Copyright terms: Public domain W3C validator