New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > risset | GIF version |
Description: Two ways to say "A belongs to B." (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
risset | ⊢ (A ∈ B ↔ ∃x ∈ B x = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1586 | . 2 ⊢ (∃x(x ∈ B ∧ x = A) ↔ ∃x(x = A ∧ x ∈ B)) | |
2 | df-rex 2621 | . 2 ⊢ (∃x ∈ B x = A ↔ ∃x(x ∈ B ∧ x = A)) | |
3 | df-clel 2349 | . 2 ⊢ (A ∈ B ↔ ∃x(x = A ∧ x ∈ B)) | |
4 | 1, 2, 3 | 3bitr4ri 269 | 1 ⊢ (A ∈ B ↔ ∃x ∈ B x = A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-clel 2349 df-rex 2621 |
This theorem is referenced by: reueq 3034 reuind 3040 0el 3567 iunid 4022 snelpw1 4147 unipw1 4326 addcid1 4406 nncaddccl 4420 vfinspsslem1 4551 vfinspclt 4553 nulnnn 4557 dfproj12 4577 dfproj22 4578 proj1op 4601 proj2op 4602 phidisjnn 4616 phialllem1 4617 dfdm4 5508 dfrn5 5509 oqelins4 5795 otsnelsi3 5806 addcfnex 5825 funsex 5829 qsid 5991 mapexi 6004 xpassen 6058 enpw1lem1 6062 enmap2lem1 6064 enmap1lem1 6070 ovcelem1 6172 ce0nn 6181 finnc 6244 nncdiv3lem1 6276 nchoicelem11 6300 nchoicelem12 6301 nchoicelem17 6306 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |