New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ifex | GIF version |
Description: Conditional operator existence. (Contributed by NM, 2-Sep-2004.) |
Ref | Expression |
---|---|
dedex.1 | ⊢ A ∈ V |
dedex.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
ifex | ⊢ if(φ, A, B) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedex.1 | . 2 ⊢ A ∈ V | |
2 | dedex.2 | . 2 ⊢ B ∈ V | |
3 | 1, 2 | keepel 3720 | 1 ⊢ if(φ, A, B) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: ifexg 3722 setswithex 4323 tfinex 4486 enprmaplem5 6081 |
Copyright terms: Public domain | W3C validator |