New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > setswithex | GIF version |
Description: The class of all sets that contain A exist. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
setswithex | ⊢ {x ∣ A ∈ x} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setswith 4322 | . 2 ⊢ {x ∣ A ∈ x} = if(A ∈ V, ( Sk “k {{A}}), ∅) | |
2 | ssetkex 4295 | . . . 4 ⊢ Sk ∈ V | |
3 | snex 4112 | . . . 4 ⊢ {{A}} ∈ V | |
4 | 2, 3 | imakex 4301 | . . 3 ⊢ ( Sk “k {{A}}) ∈ V |
5 | 0ex 4111 | . . 3 ⊢ ∅ ∈ V | |
6 | 4, 5 | ifex 3721 | . 2 ⊢ if(A ∈ V, ( Sk “k {{A}}), ∅) ∈ V |
7 | 1, 6 | eqeltri 2423 | 1 ⊢ {x ∣ A ∈ x} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 {cab 2339 Vcvv 2860 ∅c0 3551 ifcif 3663 {csn 3738 “k cimak 4180 Sk cssetk 4184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-if 3664 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-xpk 4186 df-cnvk 4187 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 |
This theorem is referenced by: nncex 4397 nnadjoinlem1 4520 spfinex 4538 |
Copyright terms: Public domain | W3C validator |