NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  setswithex GIF version

Theorem setswithex 4323
Description: The class of all sets that contain A exist. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
setswithex {x A x} V
Distinct variable group:   x,A

Proof of Theorem setswithex
StepHypRef Expression
1 setswith 4322 . 2 {x A x} = if(A V, ( Skk {{A}}), )
2 ssetkex 4295 . . . 4 Sk V
3 snex 4112 . . . 4 {{A}} V
42, 3imakex 4301 . . 3 ( Skk {{A}}) V
5 0ex 4111 . . 3 V
64, 5ifex 3721 . 2 if(A V, ( Skk {{A}}), ) V
71, 6eqeltri 2423 1 {x A x} V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  {cab 2339  Vcvv 2860  c0 3551   ifcif 3663  {csn 3738  k cimak 4180   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-if 3664  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-xpk 4186  df-cnvk 4187  df-imak 4190  df-p6 4192  df-sik 4193  df-ssetk 4194
This theorem is referenced by:  nncex  4397  nnadjoinlem1  4520  spfinex  4538
  Copyright terms: Public domain W3C validator