New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imaeq12d | GIF version |
Description: Equality theorem for image. (Contributed by SF, 8-Jan-2018.) |
Ref | Expression |
---|---|
imaeq1d.1 | ⊢ (φ → A = B) |
imaeq12d.2 | ⊢ (φ → C = D) |
Ref | Expression |
---|---|
imaeq12d | ⊢ (φ → (A “ C) = (B “ D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1d.1 | . . 3 ⊢ (φ → A = B) | |
2 | 1 | imaeq1d 4942 | . 2 ⊢ (φ → (A “ C) = (B “ C)) |
3 | imaeq12d.2 | . . 3 ⊢ (φ → C = D) | |
4 | 3 | imaeq2d 4943 | . 2 ⊢ (φ → (B “ C) = (B “ D)) |
5 | 2, 4 | eqtrd 2385 | 1 ⊢ (φ → (A “ C) = (B “ D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 “ cima 4723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-br 4641 df-ima 4728 |
This theorem is referenced by: csbima12g 4956 |
Copyright terms: Public domain | W3C validator |