New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqtrd | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtrd.1 | ⊢ (φ → A = B) |
eqtrd.2 | ⊢ (φ → B = C) |
Ref | Expression |
---|---|
eqtrd | ⊢ (φ → A = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtrd.1 | . 2 ⊢ (φ → A = B) | |
2 | eqtrd.2 | . . 3 ⊢ (φ → B = C) | |
3 | 2 | eqeq2d 2364 | . 2 ⊢ (φ → (A = B ↔ A = C)) |
4 | 1, 3 | mpbid 201 | 1 ⊢ (φ → A = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: eqtr2d 2386 eqtr3d 2387 eqtr4d 2388 3eqtrd 2389 3eqtrrd 2390 3eqtr2d 2391 syl5eq 2397 syl6eq 2401 rabeqbidv 2855 rabeqbidva 2856 csbidmg 3191 csbco3g 3194 difeq12d 3387 ifeq12d 3679 ifbieq2d 3683 ifbieq12d 3685 csbsng 3786 csbunig 3900 iuneq12d 3994 iinrab2 4030 riinrab 4042 cokeq12d 4238 pw1eqadj 4333 iotaint 4353 dfiota4 4373 ssfin 4471 tfinltfinlem1 4501 oddtfin 4519 opeq12d 4587 csbxpg 4814 coeq12d 4882 reseq12d 4936 imaeq12d 4944 csbrng 4967 csbresg 4977 dfxp2 5114 funprg 5150 funprgOLD 5151 imain 5173 fnco 5192 foima 5275 f1imacnv 5303 f1ococnv2 5310 fveq12d 5334 csbfv12g 5337 csbfv2g 5338 csbfvg 5339 fvun1 5380 fvresi 5444 csbov12g 5554 csbov1g 5555 csbov2g 5556 fmpt2x 5731 fvfullfun 5865 enmap2lem5 6068 enmap1lem5 6074 enprmaplem5 6081 sbthlem3 6206 muc0or 6253 nmembers1 6272 nchoicelem1 6290 nchoicelem2 6291 nchoicelem3 6292 nchoicelem7 6296 |
Copyright terms: Public domain | W3C validator |