New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbima12g | GIF version |
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
csbima12g | ⊢ (A ∈ C → [A / x](F “ B) = ([A / x]F “ [A / x]B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3140 | . . 3 ⊢ (y = A → [y / x](F “ B) = [A / x](F “ B)) | |
2 | csbeq1 3140 | . . . 4 ⊢ (y = A → [y / x]F = [A / x]F) | |
3 | csbeq1 3140 | . . . 4 ⊢ (y = A → [y / x]B = [A / x]B) | |
4 | 2, 3 | imaeq12d 4944 | . . 3 ⊢ (y = A → ([y / x]F “ [y / x]B) = ([A / x]F “ [A / x]B)) |
5 | 1, 4 | eqeq12d 2367 | . 2 ⊢ (y = A → ([y / x](F “ B) = ([y / x]F “ [y / x]B) ↔ [A / x](F “ B) = ([A / x]F “ [A / x]B))) |
6 | vex 2863 | . . 3 ⊢ y ∈ V | |
7 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]F | |
8 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]B | |
9 | 7, 8 | nfima 4954 | . . 3 ⊢ Ⅎx([y / x]F “ [y / x]B) |
10 | csbeq1a 3145 | . . . 4 ⊢ (x = y → F = [y / x]F) | |
11 | csbeq1a 3145 | . . . 4 ⊢ (x = y → B = [y / x]B) | |
12 | 10, 11 | imaeq12d 4944 | . . 3 ⊢ (x = y → (F “ B) = ([y / x]F “ [y / x]B)) |
13 | 6, 9, 12 | csbief 3178 | . 2 ⊢ [y / x](F “ B) = ([y / x]F “ [y / x]B) |
14 | 5, 13 | vtoclg 2915 | 1 ⊢ (A ∈ C → [A / x](F “ B) = ([A / x]F “ [A / x]B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 [csb 3137 “ cima 4723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-ima 4728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |