NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elimapw1 GIF version

Theorem elimapw1 4944
Description: Membership in an image under a unit power class. (Contributed by set.mm contributors, 19-Feb-2015.)
Assertion
Ref Expression
elimapw1 (A (B1C) ↔ x C {x}, A B)
Distinct variable groups:   x,A   x,B   x,C

Proof of Theorem elimapw1
Dummy variable t is distinct from all other variables.
StepHypRef Expression
1 elima 4754 . 2 (A (B1C) ↔ t 1 CtBA)
2 df-rex 2620 . . . . 5 (t 1 CtBAt(t 1C tBA))
3 elpw1 4144 . . . . . . . . 9 (t 1Cx C t = {x})
43anbi1i 676 . . . . . . . 8 ((t 1C tBA) ↔ (x C t = {x} tBA))
5 r19.41v 2764 . . . . . . . 8 (x C (t = {x} tBA) ↔ (x C t = {x} tBA))
64, 5bitr4i 243 . . . . . . 7 ((t 1C tBA) ↔ x C (t = {x} tBA))
76exbii 1582 . . . . . 6 (t(t 1C tBA) ↔ tx C (t = {x} tBA))
8 rexcom4 2878 . . . . . 6 (x C t(t = {x} tBA) ↔ tx C (t = {x} tBA))
97, 8bitr4i 243 . . . . 5 (t(t 1C tBA) ↔ x C t(t = {x} tBA))
102, 9bitri 240 . . . 4 (t 1 CtBAx C t(t = {x} tBA))
11 snex 4111 . . . . . 6 {x} V
12 breq1 4642 . . . . . 6 (t = {x} → (tBA ↔ {x}BA))
1311, 12ceqsexv 2894 . . . . 5 (t(t = {x} tBA) ↔ {x}BA)
1413rexbii 2639 . . . 4 (x C t(t = {x} tBA) ↔ x C {x}BA)
1510, 14bitri 240 . . 3 (t 1 CtBAx C {x}BA)
16 df-br 4640 . . . 4 ({x}BA{x}, A B)
1716rexbii 2639 . . 3 (x C {x}BAx C {x}, A B)
1815, 17bitri 240 . 2 (t 1 CtBAx C {x}, A B)
191, 18bitri 240 1 (A (B1C) ↔ x C {x}, A B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2615  {csn 3737  1cpw1 4135  cop 4561   class class class wbr 4639  cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-br 4640  df-ima 4727
This theorem is referenced by:  elimapw12  4945  elima1c  4947  elimapw11c  4948  otsnelsi3  5805  qsexg  5982
  Copyright terms: Public domain W3C validator