New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imaeq2i | GIF version |
Description: Equality theorem for image. (Contributed by set.mm contributors, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ A = B |
Ref | Expression |
---|---|
imaeq2i | ⊢ (C “ A) = (C “ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ A = B | |
2 | imaeq2 4938 | . 2 ⊢ (A = B → (C “ A) = (C “ B)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (C “ A) = (C “ B) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 “ cima 4722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-ima 4727 |
This theorem is referenced by: elima1c 4947 cnvimarndm 5017 dmco 5089 imain 5172 fnimapr 5374 imauni 5465 isoini2 5498 uniqs 5984 |
Copyright terms: Public domain | W3C validator |