Step | Hyp | Ref
| Expression |
1 | | isof1o 5489 |
. . . . . 6
⊢ (H Isom R,
S (A,
B) → H:A–1-1-onto→B) |
2 | | f1of1 5287 |
. . . . . 6
⊢ (H:A–1-1-onto→B →
H:A–1-1→B) |
3 | 1, 2 | syl 15 |
. . . . 5
⊢ (H Isom R,
S (A,
B) → H:A–1-1→B) |
4 | 3 | adantr 451 |
. . . 4
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → H:A–1-1→B) |
5 | | isoini2.1 |
. . . . 5
⊢ C = (A ∩
(◡R
“ {X})) |
6 | | inss1 3476 |
. . . . 5
⊢ (A ∩ (◡R
“ {X})) ⊆ A |
7 | 5, 6 | eqsstri 3302 |
. . . 4
⊢ C ⊆ A |
8 | | f1ores 5301 |
. . . 4
⊢ ((H:A–1-1→B
∧ C ⊆ A) →
(H ↾
C):C–1-1-onto→(H “
C)) |
9 | 4, 7, 8 | sylancl 643 |
. . 3
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → (H ↾ C):C–1-1-onto→(H “
C)) |
10 | | isoini 5498 |
. . . . 5
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → (H “ (A
∩ (◡R “ {X})))
= (B ∩ (◡S
“ {(H ‘X)}))) |
11 | 5 | imaeq2i 4941 |
. . . . 5
⊢ (H “ C) =
(H “ (A ∩ (◡R
“ {X}))) |
12 | | isoini2.2 |
. . . . 5
⊢ D = (B ∩
(◡S
“ {(H ‘X)})) |
13 | 10, 11, 12 | 3eqtr4g 2410 |
. . . 4
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → (H “ C) =
D) |
14 | | f1oeq3 5284 |
. . . 4
⊢ ((H “ C) =
D → ((H ↾ C):C–1-1-onto→(H “
C) ↔ (H ↾ C):C–1-1-onto→D)) |
15 | 13, 14 | syl 15 |
. . 3
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → ((H ↾ C):C–1-1-onto→(H “
C) ↔ (H ↾ C):C–1-1-onto→D)) |
16 | 9, 15 | mpbid 201 |
. 2
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → (H ↾ C):C–1-1-onto→D) |
17 | | df-iso 4797 |
. . . . . . 7
⊢ (H Isom R,
S (A,
B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔
(H ‘x)S(H ‘y)))) |
18 | 17 | simprbi 450 |
. . . . . 6
⊢ (H Isom R,
S (A,
B) → ∀x ∈ A ∀y ∈ A (xRy ↔ (H
‘x)S(H
‘y))) |
19 | 18 | adantr 451 |
. . . . 5
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → ∀x ∈ A ∀y ∈ A (xRy ↔ (H
‘x)S(H
‘y))) |
20 | | ssralv 3331 |
. . . . . 6
⊢ (C ⊆ A → (∀y ∈ A (xRy ↔ (H
‘x)S(H
‘y)) → ∀y ∈ C (xRy ↔ (H
‘x)S(H
‘y)))) |
21 | 20 | ralimdv 2694 |
. . . . 5
⊢ (C ⊆ A → (∀x ∈ A ∀y ∈ A (xRy ↔ (H
‘x)S(H
‘y)) → ∀x ∈ A ∀y ∈ C (xRy ↔ (H
‘x)S(H
‘y)))) |
22 | 7, 19, 21 | mpsyl 59 |
. . . 4
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → ∀x ∈ A ∀y ∈ C (xRy ↔ (H
‘x)S(H
‘y))) |
23 | | ssralv 3331 |
. . . 4
⊢ (C ⊆ A → (∀x ∈ A ∀y ∈ C (xRy ↔ (H
‘x)S(H
‘y)) → ∀x ∈ C ∀y ∈ C (xRy ↔ (H
‘x)S(H
‘y)))) |
24 | 7, 22, 23 | mpsyl 59 |
. . 3
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → ∀x ∈ C ∀y ∈ C (xRy ↔ (H
‘x)S(H
‘y))) |
25 | | fvres 5343 |
. . . . . . 7
⊢ (x ∈ C → ((H
↾ C)
‘x) = (H ‘x)) |
26 | | fvres 5343 |
. . . . . . 7
⊢ (y ∈ C → ((H
↾ C)
‘y) = (H ‘y)) |
27 | 25, 26 | breqan12d 4655 |
. . . . . 6
⊢ ((x ∈ C ∧ y ∈ C) → (((H
↾ C)
‘x)S((H ↾ C)
‘y) ↔ (H ‘x)S(H ‘y))) |
28 | 27 | bibi2d 309 |
. . . . 5
⊢ ((x ∈ C ∧ y ∈ C) → ((xRy ↔ ((H
↾ C)
‘x)S((H ↾ C)
‘y)) ↔ (xRy ↔ (H
‘x)S(H
‘y)))) |
29 | 28 | ralbidva 2631 |
. . . 4
⊢ (x ∈ C → (∀y ∈ C (xRy ↔ ((H
↾ C)
‘x)S((H ↾ C)
‘y)) ↔ ∀y ∈ C (xRy ↔ (H
‘x)S(H
‘y)))) |
30 | 29 | ralbiia 2647 |
. . 3
⊢ (∀x ∈ C ∀y ∈ C (xRy ↔ ((H
↾ C)
‘x)S((H ↾ C)
‘y)) ↔ ∀x ∈ C ∀y ∈ C (xRy ↔ (H
‘x)S(H
‘y))) |
31 | 24, 30 | sylibr 203 |
. 2
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → ∀x ∈ C ∀y ∈ C (xRy ↔ ((H
↾ C)
‘x)S((H ↾ C)
‘y))) |
32 | | df-iso 4797 |
. 2
⊢ ((H ↾ C) Isom R,
S (C,
D) ↔ ((H ↾ C):C–1-1-onto→D ∧ ∀x ∈ C ∀y ∈ C (xRy ↔
((H ↾
C) ‘x)S((H ↾ C) ‘y)))) |
33 | 16, 31, 32 | sylanbrc 645 |
1
⊢ ((H Isom R,
S (A,
B) ∧
X ∈
A) → (H ↾ C) Isom R,
S (C,
D)) |