| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > imaeq2 | GIF version | ||
| Description: Equality theorem for image. (Contributed by set.mm contributors, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq2 | ⊢ (A = B → (C “ A) = (C “ B)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 2809 | . . 3 ⊢ (A = B → (∃y ∈ A yCx ↔ ∃y ∈ B yCx)) | |
| 2 | 1 | abbidv 2468 | . 2 ⊢ (A = B → {x ∣ ∃y ∈ A yCx} = {x ∣ ∃y ∈ B yCx}) |
| 3 | df-ima 4728 | . 2 ⊢ (C “ A) = {x ∣ ∃y ∈ A yCx} | |
| 4 | df-ima 4728 | . 2 ⊢ (C “ B) = {x ∣ ∃y ∈ B yCx} | |
| 5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → (C “ A) = (C “ B)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 {cab 2339 ∃wrex 2616 class class class wbr 4640 “ cima 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-ima 4728 |
| This theorem is referenced by: imaeq2i 4941 imaeq2d 4943 foima 5275 f1imacnv 5303 clos1induct 5881 ecexr 5951 ncdisjun 6137 |
| Copyright terms: Public domain | W3C validator |