New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssuni | GIF version |
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ssuni | ⊢ ((A ⊆ B ∧ B ∈ C) → A ⊆ ∪C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . . . . . . 7 ⊢ (x = B → (y ∈ x ↔ y ∈ B)) | |
2 | 1 | imbi1d 308 | . . . . . 6 ⊢ (x = B → ((y ∈ x → y ∈ ∪C) ↔ (y ∈ B → y ∈ ∪C))) |
3 | elunii 3897 | . . . . . . 7 ⊢ ((y ∈ x ∧ x ∈ C) → y ∈ ∪C) | |
4 | 3 | expcom 424 | . . . . . 6 ⊢ (x ∈ C → (y ∈ x → y ∈ ∪C)) |
5 | 2, 4 | vtoclga 2921 | . . . . 5 ⊢ (B ∈ C → (y ∈ B → y ∈ ∪C)) |
6 | 5 | imim2d 48 | . . . 4 ⊢ (B ∈ C → ((y ∈ A → y ∈ B) → (y ∈ A → y ∈ ∪C))) |
7 | 6 | alimdv 1621 | . . 3 ⊢ (B ∈ C → (∀y(y ∈ A → y ∈ B) → ∀y(y ∈ A → y ∈ ∪C))) |
8 | dfss2 3263 | . . 3 ⊢ (A ⊆ B ↔ ∀y(y ∈ A → y ∈ B)) | |
9 | dfss2 3263 | . . 3 ⊢ (A ⊆ ∪C ↔ ∀y(y ∈ A → y ∈ ∪C)) | |
10 | 7, 8, 9 | 3imtr4g 261 | . 2 ⊢ (B ∈ C → (A ⊆ B → A ⊆ ∪C)) |
11 | 10 | impcom 419 | 1 ⊢ ((A ⊆ B ∧ B ∈ C) → A ⊆ ∪C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-uni 3893 |
This theorem is referenced by: elssuni 3920 uniss2 3923 |
Copyright terms: Public domain | W3C validator |