NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  issetri GIF version

Theorem issetri 2867
Description: A way to say "A is a set" (inference rule). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
issetri.1 x x = A
Assertion
Ref Expression
issetri A V
Distinct variable group:   x,A

Proof of Theorem issetri
StepHypRef Expression
1 issetri.1 . 2 x x = A
2 isset 2864 . 2 (A V ↔ x x = A)
31, 2mpbir 200 1 A V
Colors of variables: wff setvar class
Syntax hints:  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-v 2862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator