New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elex | GIF version |
Description: If a class is a member of another class, it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elex | ⊢ (A ∈ B → A ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1592 | . 2 ⊢ (∃x(x = A ∧ x ∈ B) → ∃x x = A) | |
2 | df-clel 2349 | . 2 ⊢ (A ∈ B ↔ ∃x(x = A ∧ x ∈ B)) | |
3 | isset 2864 | . 2 ⊢ (A ∈ V ↔ ∃x x = A) | |
4 | 1, 2, 3 | 3imtr4i 257 | 1 ⊢ (A ∈ B → A ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: elexi 2869 elisset 2870 vtoclgft 2906 vtoclgf 2914 vtocl2gf 2917 vtocl3gf 2918 spcimgft 2931 elab4g 2990 elrabf 2994 mob 3019 sbcex 3056 sbcieg 3079 sbcrext 3120 sbcabel 3124 csbexg 3147 csbcomg 3160 csbvarg 3164 csbiebt 3173 csbnestgf 3185 csbidmg 3191 sbcco3g 3192 csbco3g 3194 elin 3220 elun 3221 ssv 3292 snidb 3760 ifpr 3775 eluni 3895 eliun 3974 el1c 4140 elxpk 4197 opkelopkabg 4246 opkelcokg 4262 opkelimagekg 4272 setswith 4322 euabex 4335 iota2 4368 eladdc 4399 ncfinlower 4484 opeqex 4622 brex 4690 elopab 4697 elima 4755 epelc 4766 opeliunxp 4821 eliunxp 4822 opeliunxp2 4823 ideqg 4869 ideqg2 4870 opeldm 4911 elimasn 5020 fvelimab 5371 fvopab4t 5386 fvopabg 5392 eloprabga 5579 dmmptg 5685 fnmpt 5690 ov2gf 5712 fvmptf 5723 fnmpt2 5733 elfix 5788 otelins2 5792 otelins3 5793 oqelins4 5795 cupvalg 5813 composevalg 5818 ovcross 5846 brfullfung 5866 fvdomfn 5869 fvranfn 5870 erref 5960 erth 5969 erth2 5970 mapvalg 6010 pmvalg 6011 elncs 6120 elnc 6126 eqncg 6127 elce 6176 ce0nnuli 6179 spacind 6288 elcan 6330 elscan 6331 |
Copyright terms: Public domain | W3C validator |