NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbthlem1 GIF version

Theorem sbthlem1 6204
Description: Lemma for sbth 6207. Set up similarity with a range. Theorem XI.1.14 of [Rosser] p. 350. (Contributed by SF, 11-Mar-2015.)
Hypotheses
Ref Expression
sbthlem1.1 R V
sbthlem1.2 X V
sbthlem1.3 G = Clos1 ((X ran R), R)
sbthlem1.4 A = (XG)
sbthlem1.5 B = (X G)
sbthlem1.6 C = (ran RG)
sbthlem1.7 D = (ran R G)
Assertion
Ref Expression
sbthlem1 (((Fun R Fun R) (X dom R ran R X)) → ran RX)

Proof of Theorem sbthlem1
StepHypRef Expression
1 df-f1 4793 . . . . . . . . 9 (R:dom R1-1→ran R ↔ (R:dom R–→ran R Fun R))
2 ssid 3291 . . . . . . . . . . . 12 ran R ran R
3 df-f 4792 . . . . . . . . . . . 12 (R:dom R–→ran R ↔ (R Fn dom R ran R ran R))
42, 3mpbiran2 885 . . . . . . . . . . 11 (R:dom R–→ran RR Fn dom R)
5 funfn 5137 . . . . . . . . . . 11 (Fun RR Fn dom R)
64, 5bitr4i 243 . . . . . . . . . 10 (R:dom R–→ran R ↔ Fun R)
76anbi1i 676 . . . . . . . . 9 ((R:dom R–→ran R Fun R) ↔ (Fun R Fun R))
81, 7bitri 240 . . . . . . . 8 (R:dom R1-1→ran R ↔ (Fun R Fun R))
98biimpri 197 . . . . . . 7 ((Fun R Fun R) → R:dom R1-1→ran R)
10 sbthlem1.4 . . . . . . . . 9 A = (XG)
11 inss1 3476 . . . . . . . . . 10 (XG) X
12 sstr 3281 . . . . . . . . . 10 (((XG) X X dom R) → (XG) dom R)
1311, 12mpan 651 . . . . . . . . 9 (X dom R → (XG) dom R)
1410, 13syl5eqss 3316 . . . . . . . 8 (X dom RA dom R)
1514adantr 451 . . . . . . 7 ((X dom R ran R X) → A dom R)
16 f1ores 5301 . . . . . . 7 ((R:dom R1-1→ran R A dom R) → (R A):A1-1-onto→(RA))
179, 15, 16syl2an 463 . . . . . 6 (((Fun R Fun R) (X dom R ran R X)) → (R A):A1-1-onto→(RA))
18 sbthlem1.1 . . . . . . . 8 R V
19 sbthlem1.2 . . . . . . . . . 10 X V
20 sbthlem1.3 . . . . . . . . . . 11 G = Clos1 ((X ran R), R)
2118rnex 5108 . . . . . . . . . . . . 13 ran R V
2219, 21difex 4108 . . . . . . . . . . . 12 (X ran R) V
2322, 18clos1ex 5877 . . . . . . . . . . 11 Clos1 ((X ran R), R) V
2420, 23eqeltri 2423 . . . . . . . . . 10 G V
2519, 24inex 4106 . . . . . . . . 9 (XG) V
2610, 25eqeltri 2423 . . . . . . . 8 A V
2718, 26resex 5118 . . . . . . 7 (R A) V
2827f1oen 6034 . . . . . 6 ((R A):A1-1-onto→(RA) → A ≈ (RA))
2917, 28syl 15 . . . . 5 (((Fun R Fun R) (X dom R ran R X)) → A ≈ (RA))
30 sbthlem1.6 . . . . . . . . 9 C = (ran RG)
3122, 18, 20clos1baseima 5884 . . . . . . . . . 10 G = ((X ran R) ∪ (RG))
3231ineq2i 3455 . . . . . . . . 9 (ran RG) = (ran R ∩ ((X ran R) ∪ (RG)))
33 indi 3502 . . . . . . . . . 10 (ran R ∩ ((X ran R) ∪ (RG))) = ((ran R ∩ (X ran R)) ∪ (ran R ∩ (RG)))
34 disjdif 3623 . . . . . . . . . . 11 (ran R ∩ (X ran R)) =
3534uneq1i 3415 . . . . . . . . . 10 ((ran R ∩ (X ran R)) ∪ (ran R ∩ (RG))) = ( ∪ (ran R ∩ (RG)))
36 uncom 3409 . . . . . . . . . . 11 ( ∪ (ran R ∩ (RG))) = ((ran R ∩ (RG)) ∪ )
37 un0 3576 . . . . . . . . . . 11 ((ran R ∩ (RG)) ∪ ) = (ran R ∩ (RG))
3836, 37eqtri 2373 . . . . . . . . . 10 ( ∪ (ran R ∩ (RG))) = (ran R ∩ (RG))
3933, 35, 383eqtri 2377 . . . . . . . . 9 (ran R ∩ ((X ran R) ∪ (RG))) = (ran R ∩ (RG))
4030, 32, 393eqtri 2377 . . . . . . . 8 C = (ran R ∩ (RG))
41 inss2 3477 . . . . . . . . 9 (ran R ∩ (RG)) (RG)
4241a1i 10 . . . . . . . 8 (((Fun R Fun R) (X dom R ran R X)) → (ran R ∩ (RG)) (RG))
4340, 42syl5eqss 3316 . . . . . . 7 (((Fun R Fun R) (X dom R ran R X)) → C (RG))
44 imassrn 5010 . . . . . . . . . . . . . 14 (RG) ran R
45 simprr 733 . . . . . . . . . . . . . 14 (((Fun R Fun R) (X dom R ran R X)) → ran R X)
4644, 45syl5ss 3284 . . . . . . . . . . . . 13 (((Fun R Fun R) (X dom R ran R X)) → (RG) X)
47 difss 3394 . . . . . . . . . . . . 13 (X ran R) X
4846, 47jctil 523 . . . . . . . . . . . 12 (((Fun R Fun R) (X dom R ran R X)) → ((X ran R) X (RG) X))
49 unss 3438 . . . . . . . . . . . 12 (((X ran R) X (RG) X) ↔ ((X ran R) ∪ (RG)) X)
5048, 49sylib 188 . . . . . . . . . . 11 (((Fun R Fun R) (X dom R ran R X)) → ((X ran R) ∪ (RG)) X)
5131, 50syl5eqss 3316 . . . . . . . . . 10 (((Fun R Fun R) (X dom R ran R X)) → G X)
52 sseqin2 3475 . . . . . . . . . 10 (G X ↔ (XG) = G)
5351, 52sylib 188 . . . . . . . . 9 (((Fun R Fun R) (X dom R ran R X)) → (XG) = G)
5410, 53syl5eq 2397 . . . . . . . 8 (((Fun R Fun R) (X dom R ran R X)) → A = G)
5554imaeq2d 4943 . . . . . . 7 (((Fun R Fun R) (X dom R ran R X)) → (RA) = (RG))
5643, 55sseqtr4d 3309 . . . . . 6 (((Fun R Fun R) (X dom R ran R X)) → C (RA))
57 ssun2 3428 . . . . . . . . . . 11 (RG) ((X ran R) ∪ (RG))
5857, 31sseqtr4i 3305 . . . . . . . . . 10 (RG) G
5955sseq1d 3299 . . . . . . . . . 10 (((Fun R Fun R) (X dom R ran R X)) → ((RA) G ↔ (RG) G))
6058, 59mpbiri 224 . . . . . . . . 9 (((Fun R Fun R) (X dom R ran R X)) → (RA) G)
61 imassrn 5010 . . . . . . . . 9 (RA) ran R
6260, 61jctil 523 . . . . . . . 8 (((Fun R Fun R) (X dom R ran R X)) → ((RA) ran R (RA) G))
63 ssin 3478 . . . . . . . 8 (((RA) ran R (RA) G) ↔ (RA) (ran RG))
6462, 63sylib 188 . . . . . . 7 (((Fun R Fun R) (X dom R ran R X)) → (RA) (ran RG))
6564, 30syl6sseqr 3319 . . . . . 6 (((Fun R Fun R) (X dom R ran R X)) → (RA) C)
6656, 65eqssd 3290 . . . . 5 (((Fun R Fun R) (X dom R ran R X)) → C = (RA))
6729, 66breqtrrd 4666 . . . 4 (((Fun R Fun R) (X dom R ran R X)) → AC)
68 sbthlem1.5 . . . . . . 7 B = (X G)
6919, 24difex 4108 . . . . . . 7 (X G) V
7068, 69eqeltri 2423 . . . . . 6 B V
7170enrflx 6036 . . . . 5 BB
72 difsscompl 3550 . . . . . . . . . 10 (X G) G
7372a1i 10 . . . . . . . . 9 (((Fun R Fun R) (X dom R ran R X)) → (X G) G)
74 df-dif 3216 . . . . . . . . . . 11 (X G) = (X ∩ ∼ G)
7520clos1base 5879 . . . . . . . . . . . . . 14 (X ran R) G
76 sscon34 3662 . . . . . . . . . . . . . 14 ((X ran R) G ↔ ∼ G ∼ (X ran R))
7775, 76mpbi 199 . . . . . . . . . . . . 13 G ∼ (X ran R)
78 df-dif 3216 . . . . . . . . . . . . . . 15 (X ran R) = (X ∩ ∼ ran R)
7978compleqi 3245 . . . . . . . . . . . . . 14 ∼ (X ran R) = ∼ (X ∩ ∼ ran R)
80 iinun 3549 . . . . . . . . . . . . . 14 ∼ (X ∩ ∼ ran R) = ( ∼ X ∪ ∼ ∼ ran R)
81 dblcompl 3228 . . . . . . . . . . . . . . 15 ∼ ∼ ran R = ran R
8281uneq2i 3416 . . . . . . . . . . . . . 14 ( ∼ X ∪ ∼ ∼ ran R) = ( ∼ X ∪ ran R)
8379, 80, 823eqtri 2377 . . . . . . . . . . . . 13 ∼ (X ran R) = ( ∼ X ∪ ran R)
8477, 83sseqtri 3304 . . . . . . . . . . . 12 G ( ∼ X ∪ ran R)
85 sslin 3482 . . . . . . . . . . . 12 ( ∼ G ( ∼ X ∪ ran R) → (X ∩ ∼ G) (X ∩ ( ∼ X ∪ ran R)))
8684, 85ax-mp 5 . . . . . . . . . . 11 (X ∩ ∼ G) (X ∩ ( ∼ X ∪ ran R))
8774, 86eqsstri 3302 . . . . . . . . . 10 (X G) (X ∩ ( ∼ X ∪ ran R))
88 indi 3502 . . . . . . . . . . . 12 (X ∩ ( ∼ X ∪ ran R)) = ((X ∩ ∼ X) ∪ (X ∩ ran R))
89 incompl 4074 . . . . . . . . . . . . 13 (X ∩ ∼ X) =
9089uneq1i 3415 . . . . . . . . . . . 12 ((X ∩ ∼ X) ∪ (X ∩ ran R)) = ( ∪ (X ∩ ran R))
91 uncom 3409 . . . . . . . . . . . . 13 ( ∪ (X ∩ ran R)) = ((X ∩ ran R) ∪ )
92 un0 3576 . . . . . . . . . . . . 13 ((X ∩ ran R) ∪ ) = (X ∩ ran R)
9391, 92eqtri 2373 . . . . . . . . . . . 12 ( ∪ (X ∩ ran R)) = (X ∩ ran R)
9488, 90, 933eqtri 2377 . . . . . . . . . . 11 (X ∩ ( ∼ X ∪ ran R)) = (X ∩ ran R)
95 inss2 3477 . . . . . . . . . . 11 (X ∩ ran R) ran R
9694, 95eqsstri 3302 . . . . . . . . . 10 (X ∩ ( ∼ X ∪ ran R)) ran R
9787, 96sstri 3282 . . . . . . . . 9 (X G) ran R
9873, 97jctil 523 . . . . . . . 8 (((Fun R Fun R) (X dom R ran R X)) → ((X G) ran R (X G) G))
99 ssin 3478 . . . . . . . 8 (((X G) ran R (X G) G) ↔ (X G) (ran R ∩ ∼ G))
10098, 99sylib 188 . . . . . . 7 (((Fun R Fun R) (X dom R ran R X)) → (X G) (ran R ∩ ∼ G))
101 sbthlem1.7 . . . . . . . 8 D = (ran R G)
102 df-dif 3216 . . . . . . . 8 (ran R G) = (ran R ∩ ∼ G)
103101, 102eqtri 2373 . . . . . . 7 D = (ran R ∩ ∼ G)
104100, 68, 1033sstr4g 3313 . . . . . 6 (((Fun R Fun R) (X dom R ran R X)) → B D)
105 ssdif 3402 . . . . . . . 8 (ran R X → (ran R G) (X G))
10645, 105syl 15 . . . . . . 7 (((Fun R Fun R) (X dom R ran R X)) → (ran R G) (X G))
107106, 101, 683sstr4g 3313 . . . . . 6 (((Fun R Fun R) (X dom R ran R X)) → D B)
108104, 107eqssd 3290 . . . . 5 (((Fun R Fun R) (X dom R ran R X)) → B = D)
10971, 108syl5breq 4675 . . . 4 (((Fun R Fun R) (X dom R ran R X)) → BD)
11010, 68ineq12i 3456 . . . . . 6 (AB) = ((XG) ∩ (X G))
111 inindif 4076 . . . . . 6 ((XG) ∩ (X G)) =
112110, 111eqtri 2373 . . . . 5 (AB) =
11330, 101ineq12i 3456 . . . . . 6 (CD) = ((ran RG) ∩ (ran R G))
114 inindif 4076 . . . . . 6 ((ran RG) ∩ (ran R G)) =
115113, 114eqtri 2373 . . . . 5 (CD) =
116 unen 6049 . . . . 5 (((AC BD) ((AB) = (CD) = )) → (AB) ≈ (CD))
117112, 115, 116mpanr12 666 . . . 4 ((AC BD) → (AB) ≈ (CD))
11867, 109, 117syl2anc 642 . . 3 (((Fun R Fun R) (X dom R ran R X)) → (AB) ≈ (CD))
119 ensym 6038 . . 3 ((AB) ≈ (CD) ↔ (CD) ≈ (AB))
120118, 119sylib 188 . 2 (((Fun R Fun R) (X dom R ran R X)) → (CD) ≈ (AB))
12130, 101uneq12i 3417 . . 3 (CD) = ((ran RG) ∪ (ran R G))
122 inundif 3629 . . 3 ((ran RG) ∪ (ran R G)) = ran R
123121, 122eqtri 2373 . 2 (CD) = ran R
12410, 68uneq12i 3417 . . 3 (AB) = ((XG) ∪ (X G))
125 inundif 3629 . . 3 ((XG) ∪ (X G)) = X
126124, 125eqtri 2373 . 2 (AB) = X
127120, 123, 1263brtr3g 4671 1 (((Fun R Fun R) (X dom R ran R X)) → ran RX)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  cin 3209   wss 3258  c0 3551   class class class wbr 4640  cima 4723  ccnv 4772  dom cdm 4773  ran crn 4774   cres 4775  Fun wfun 4776   Fn wfn 4777  –→wf 4778  1-1wf1 4779  1-1-ontowf1o 4781   Clos1 cclos1 5873  cen 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-fix 5741  df-ins2 5751  df-ins3 5753  df-image 5755  df-clos1 5874  df-en 6030
This theorem is referenced by:  sbthlem2  6205
  Copyright terms: Public domain W3C validator