![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > iunxdif2 | GIF version |
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.) |
Ref | Expression |
---|---|
iunxdif2.1 | ⊢ (x = y → C = D) |
Ref | Expression |
---|---|
iunxdif2 | ⊢ (∀x ∈ A ∃y ∈ (A ∖ B)C ⊆ D → ∪y ∈ (A ∖ B)D = ∪x ∈ A C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss2 4011 | . . 3 ⊢ (∀x ∈ A ∃y ∈ (A ∖ B)C ⊆ D → ∪x ∈ A C ⊆ ∪y ∈ (A ∖ B)D) | |
2 | difss 3393 | . . . . 5 ⊢ (A ∖ B) ⊆ A | |
3 | iunss1 3980 | . . . . 5 ⊢ ((A ∖ B) ⊆ A → ∪y ∈ (A ∖ B)D ⊆ ∪y ∈ A D) | |
4 | 2, 3 | ax-mp 8 | . . . 4 ⊢ ∪y ∈ (A ∖ B)D ⊆ ∪y ∈ A D |
5 | iunxdif2.1 | . . . . 5 ⊢ (x = y → C = D) | |
6 | 5 | cbviunv 4005 | . . . 4 ⊢ ∪x ∈ A C = ∪y ∈ A D |
7 | 4, 6 | sseqtr4i 3304 | . . 3 ⊢ ∪y ∈ (A ∖ B)D ⊆ ∪x ∈ A C |
8 | 1, 7 | jctil 523 | . 2 ⊢ (∀x ∈ A ∃y ∈ (A ∖ B)C ⊆ D → (∪y ∈ (A ∖ B)D ⊆ ∪x ∈ A C ∧ ∪x ∈ A C ⊆ ∪y ∈ (A ∖ B)D)) |
9 | eqss 3287 | . 2 ⊢ (∪y ∈ (A ∖ B)D = ∪x ∈ A C ↔ (∪y ∈ (A ∖ B)D ⊆ ∪x ∈ A C ∧ ∪x ∈ A C ⊆ ∪y ∈ (A ∖ B)D)) | |
10 | 8, 9 | sylibr 203 | 1 ⊢ (∀x ∈ A ∃y ∈ (A ∖ B)C ⊆ D → ∪y ∈ (A ∖ B)D = ∪x ∈ A C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∀wral 2614 ∃wrex 2615 ∖ cdif 3206 ⊆ wss 3257 ∪ciun 3969 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-ss 3259 df-iun 3971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |