NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iunxdif2 GIF version

Theorem iunxdif2 4015
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.)
Hypothesis
Ref Expression
iunxdif2.1 (x = yC = D)
Assertion
Ref Expression
iunxdif2 (x A y (A B)C Dy (A B)D = x A C)
Distinct variable groups:   x,y,A   x,B,y   y,C   x,D
Allowed substitution hints:   C(x)   D(y)

Proof of Theorem iunxdif2
StepHypRef Expression
1 iunss2 4012 . . 3 (x A y (A B)C Dx A C y (A B)D)
2 difss 3394 . . . . 5 (A B) A
3 iunss1 3981 . . . . 5 ((A B) Ay (A B)D y A D)
42, 3ax-mp 5 . . . 4 y (A B)D y A D
5 iunxdif2.1 . . . . 5 (x = yC = D)
65cbviunv 4006 . . . 4 x A C = y A D
74, 6sseqtr4i 3305 . . 3 y (A B)D x A C
81, 7jctil 523 . 2 (x A y (A B)C D → (y (A B)D x A C x A C y (A B)D))
9 eqss 3288 . 2 (y (A B)D = x A C ↔ (y (A B)D x A C x A C y (A B)D))
108, 9sylibr 203 1 (x A y (A B)C Dy (A B)D = x A C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642  wral 2615  wrex 2616   cdif 3207   wss 3258  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-iun 3972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator