New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unidif | GIF version |
Description: If the difference A ∖ B contains the largest members of A, then the union of the difference is the union of A. (Contributed by NM, 22-Mar-2004.) |
Ref | Expression |
---|---|
unidif | ⊢ (∀x ∈ A ∃y ∈ (A ∖ B)x ⊆ y → ∪(A ∖ B) = ∪A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss2 3923 | . . 3 ⊢ (∀x ∈ A ∃y ∈ (A ∖ B)x ⊆ y → ∪A ⊆ ∪(A ∖ B)) | |
2 | difss 3394 | . . . 4 ⊢ (A ∖ B) ⊆ A | |
3 | uniss 3913 | . . . 4 ⊢ ((A ∖ B) ⊆ A → ∪(A ∖ B) ⊆ ∪A) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∪(A ∖ B) ⊆ ∪A |
5 | 1, 4 | jctil 523 | . 2 ⊢ (∀x ∈ A ∃y ∈ (A ∖ B)x ⊆ y → (∪(A ∖ B) ⊆ ∪A ∧ ∪A ⊆ ∪(A ∖ B))) |
6 | eqss 3288 | . 2 ⊢ (∪(A ∖ B) = ∪A ↔ (∪(A ∖ B) ⊆ ∪A ∧ ∪A ⊆ ∪(A ∖ B))) | |
7 | 5, 6 | sylibr 203 | 1 ⊢ (∀x ∈ A ∃y ∈ (A ∖ B)x ⊆ y → ∪(A ∖ B) = ∪A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∀wral 2615 ∃wrex 2616 ∖ cdif 3207 ⊆ wss 3258 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-uni 3893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |