NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unidif GIF version

Theorem unidif 3924
Description: If the difference A B contains the largest members of A, then the union of the difference is the union of A. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif (x A y (A B)x y(A B) = A)
Distinct variable groups:   x,y,A   x,B,y

Proof of Theorem unidif
StepHypRef Expression
1 uniss2 3923 . . 3 (x A y (A B)x yA (A B))
2 difss 3394 . . . 4 (A B) A
3 uniss 3913 . . . 4 ((A B) A(A B) A)
42, 3ax-mp 5 . . 3 (A B) A
51, 4jctil 523 . 2 (x A y (A B)x y → ((A B) A A (A B)))
6 eqss 3288 . 2 ((A B) = A ↔ ((A B) A A (A B)))
75, 6sylibr 203 1 (x A y (A B)x y(A B) = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642  wral 2615  wrex 2616   cdif 3207   wss 3258  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-uni 3893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator