New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > moanmo | GIF version |
Description: Nested "at most one" quantifiers. (Contributed by NM, 25-Jan-2006.) |
Ref | Expression |
---|---|
moanmo | ⊢ ∃*x(φ ∧ ∃*xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (∃*xφ → ∃*xφ) | |
2 | nfmo1 2215 | . . . 4 ⊢ Ⅎx∃*xφ | |
3 | 2 | moanim 2260 | . . 3 ⊢ (∃*x(∃*xφ ∧ φ) ↔ (∃*xφ → ∃*xφ)) |
4 | 1, 3 | mpbir 200 | . 2 ⊢ ∃*x(∃*xφ ∧ φ) |
5 | ancom 437 | . . 3 ⊢ ((φ ∧ ∃*xφ) ↔ (∃*xφ ∧ φ)) | |
6 | 5 | mobii 2240 | . 2 ⊢ (∃*x(φ ∧ ∃*xφ) ↔ ∃*x(∃*xφ ∧ φ)) |
7 | 4, 6 | mpbir 200 | 1 ⊢ ∃*x(φ ∧ ∃*xφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |