NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  euanv GIF version

Theorem euanv 2265
Description: Introduction of a conjunct into uniqueness quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
euanv (∃!x(φ ψ) ↔ (φ ∃!xψ))
Distinct variable group:   φ,x
Allowed substitution hint:   ψ(x)

Proof of Theorem euanv
StepHypRef Expression
1 nfv 1619 . 2 xφ
21euan 2261 1 (∃!x(φ ψ) ↔ (φ ∃!xψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  ∃!weu 2204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209
This theorem is referenced by:  eueq2  3011  2reu5lem1  3042  fsn  5433
  Copyright terms: Public domain W3C validator