New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mobidv | GIF version |
Description: Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
mobidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
mobidv | ⊢ (φ → (∃*xψ ↔ ∃*xχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
2 | mobidv.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | mobid 2238 | 1 ⊢ (φ → (∃*xψ ↔ ∃*xχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-eu 2208 df-mo 2209 |
This theorem is referenced by: mobii 2240 mosubopt 4613 dffun6f 5124 funmo 5126 |
Copyright terms: Public domain | W3C validator |