NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mobid GIF version

Theorem mobid 2238
Description: Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.)
Hypotheses
Ref Expression
mobid.1 xφ
mobid.2 (φ → (ψχ))
Assertion
Ref Expression
mobid (φ → (∃*xψ∃*xχ))

Proof of Theorem mobid
StepHypRef Expression
1 mobid.1 . . . 4 xφ
2 mobid.2 . . . 4 (φ → (ψχ))
31, 2exbid 1773 . . 3 (φ → (xψxχ))
41, 2eubid 2211 . . 3 (φ → (∃!xψ∃!xχ))
53, 4imbi12d 311 . 2 (φ → ((xψ∃!xψ) ↔ (xχ∃!xχ)))
6 df-mo 2209 . 2 (∃*xψ ↔ (xψ∃!xψ))
7 df-mo 2209 . 2 (∃*xχ ↔ (xχ∃!xχ))
85, 6, 73bitr4g 279 1 (φ → (∃*xψ∃*xχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wex 1541  wnf 1544  ∃!weu 2204  ∃*wmo 2205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-eu 2208  df-mo 2209
This theorem is referenced by:  mobidv  2239  euan  2261  rmobida  2799  rmoeq1f  2807
  Copyright terms: Public domain W3C validator