| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mobid | GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.) |
| Ref | Expression |
|---|---|
| mobid.1 | ⊢ Ⅎxφ |
| mobid.2 | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| mobid | ⊢ (φ → (∃*xψ ↔ ∃*xχ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobid.1 | . . . 4 ⊢ Ⅎxφ | |
| 2 | mobid.2 | . . . 4 ⊢ (φ → (ψ ↔ χ)) | |
| 3 | 1, 2 | exbid 1773 | . . 3 ⊢ (φ → (∃xψ ↔ ∃xχ)) |
| 4 | 1, 2 | eubid 2211 | . . 3 ⊢ (φ → (∃!xψ ↔ ∃!xχ)) |
| 5 | 3, 4 | imbi12d 311 | . 2 ⊢ (φ → ((∃xψ → ∃!xψ) ↔ (∃xχ → ∃!xχ))) |
| 6 | df-mo 2209 | . 2 ⊢ (∃*xψ ↔ (∃xψ → ∃!xψ)) | |
| 7 | df-mo 2209 | . 2 ⊢ (∃*xχ ↔ (∃xχ → ∃!xχ)) | |
| 8 | 5, 6, 7 | 3bitr4g 279 | 1 ⊢ (φ → (∃*xψ ↔ ∃*xχ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 Ⅎwnf 1544 ∃!weu 2204 ∃*wmo 2205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-eu 2208 df-mo 2209 |
| This theorem is referenced by: mobidv 2239 euan 2261 rmobida 2799 rmoeq1f 2807 |
| Copyright terms: Public domain | W3C validator |