Step | Hyp | Ref
| Expression |
1 | | breq2 4643 |
. . . . . 6
⊢ (n = B →
(A ≤c n ↔ A
≤c B)) |
2 | | breq1 4642 |
. . . . . 6
⊢ (n = B →
(n ≤c A ↔ B
≤c A)) |
3 | 1, 2 | orbi12d 690 |
. . . . 5
⊢ (n = B →
((A ≤c n ∨ n ≤c A) ↔ (A
≤c B
∨ B ≤c A))) |
4 | 3 | imbi2d 307 |
. . . 4
⊢ (n = B →
((A ∈
Nn → (A
≤c n
∨ n ≤c A)) ↔ (A
∈ Nn →
(A ≤c B ∨ B ≤c A)))) |
5 | | elun 3220 |
. . . . . . . . . . . 12
⊢ (a ∈ ((◡ ≤c “ {n}) ∪ ( ≤c “ {n})) ↔ (a
∈ (◡
≤c “ {n}) ∨ a ∈ ( ≤c “ {n}))) |
6 | | eliniseg 5020 |
. . . . . . . . . . . . 13
⊢ (a ∈ (◡ ≤c “ {n}) ↔ a
≤c n) |
7 | | elimasn 5019 |
. . . . . . . . . . . . . 14
⊢ (a ∈ (
≤c “ {n}) ↔ 〈n, a〉 ∈ ≤c ) |
8 | | df-br 4640 |
. . . . . . . . . . . . . 14
⊢ (n ≤c a ↔ 〈n, a〉 ∈
≤c ) |
9 | 7, 8 | bitr4i 243 |
. . . . . . . . . . . . 13
⊢ (a ∈ (
≤c “ {n}) ↔
n ≤c a) |
10 | 6, 9 | orbi12i 507 |
. . . . . . . . . . . 12
⊢ ((a ∈ (◡ ≤c “ {n}) ∨ a ∈ (
≤c “ {n})) ↔
(a ≤c n ∨ n ≤c a)) |
11 | 5, 10 | bitri 240 |
. . . . . . . . . . 11
⊢ (a ∈ ((◡ ≤c “ {n}) ∪ ( ≤c “ {n})) ↔ (a
≤c n
∨ n ≤c a)) |
12 | 11 | abbi2i 2464 |
. . . . . . . . . 10
⊢ ((◡ ≤c “ {n}) ∪ ( ≤c “ {n})) = {a ∣ (a
≤c n
∨ n ≤c a)} |
13 | 12 | uneq2i 3415 |
. . . . . . . . 9
⊢ ({a ∣ ¬
n ∈ Nn } ∪ ((◡
≤c “ {n}) ∪ (
≤c “ {n}))) =
({a ∣
¬ n ∈
Nn } ∪ {a
∣ (a
≤c n
∨ n ≤c a)}) |
14 | | unab 3521 |
. . . . . . . . 9
⊢ ({a ∣ ¬
n ∈ Nn } ∪ {a ∣ (a
≤c n
∨ n ≤c a)}) = {a ∣ (¬ n
∈ Nn ∨ (a
≤c n
∨ n ≤c a))} |
15 | 13, 14 | eqtri 2373 |
. . . . . . . 8
⊢ ({a ∣ ¬
n ∈ Nn } ∪ ((◡
≤c “ {n}) ∪ (
≤c “ {n}))) = {a ∣ (¬
n ∈ Nn ∨ (a ≤c n ∨ n ≤c a))} |
16 | | imor 401 |
. . . . . . . . 9
⊢ ((n ∈ Nn → (a
≤c n
∨ n ≤c a)) ↔ (¬ n ∈ Nn ∨ (a ≤c n ∨ n ≤c a))) |
17 | 16 | abbii 2465 |
. . . . . . . 8
⊢ {a ∣ (n ∈ Nn → (a
≤c n
∨ n ≤c a))} = {a ∣ (¬ n
∈ Nn ∨ (a
≤c n
∨ n ≤c a))} |
18 | 15, 17 | eqtr4i 2376 |
. . . . . . 7
⊢ ({a ∣ ¬
n ∈ Nn } ∪ ((◡
≤c “ {n}) ∪ (
≤c “ {n}))) = {a ∣ (n ∈ Nn → (a
≤c n
∨ n ≤c a))} |
19 | | abexv 4324 |
. . . . . . . 8
⊢ {a ∣ ¬
n ∈ Nn } ∈
V |
20 | | lecex 6115 |
. . . . . . . . . . 11
⊢ ≤c
∈ V |
21 | 20 | cnvex 5102 |
. . . . . . . . . 10
⊢ ◡ ≤c ∈ V |
22 | | snex 4111 |
. . . . . . . . . 10
⊢ {n} ∈
V |
23 | 21, 22 | imaex 4747 |
. . . . . . . . 9
⊢ (◡ ≤c “ {n}) ∈
V |
24 | 20, 22 | imaex 4747 |
. . . . . . . . 9
⊢ ( ≤c
“ {n}) ∈ V |
25 | 23, 24 | unex 4106 |
. . . . . . . 8
⊢ ((◡ ≤c “ {n}) ∪ ( ≤c “ {n})) ∈
V |
26 | 19, 25 | unex 4106 |
. . . . . . 7
⊢ ({a ∣ ¬
n ∈ Nn } ∪ ((◡
≤c “ {n}) ∪ (
≤c “ {n}))) ∈ V |
27 | 18, 26 | eqeltrri 2424 |
. . . . . 6
⊢ {a ∣ (n ∈ Nn → (a
≤c n
∨ n ≤c a))} ∈
V |
28 | | breq1 4642 |
. . . . . . . 8
⊢ (a = 0c → (a ≤c n ↔ 0c ≤c
n)) |
29 | | breq2 4643 |
. . . . . . . 8
⊢ (a = 0c → (n ≤c a ↔ n
≤c 0c)) |
30 | 28, 29 | orbi12d 690 |
. . . . . . 7
⊢ (a = 0c → ((a ≤c n ∨ n ≤c a) ↔ (0c ≤c
n ∨
n ≤c
0c))) |
31 | 30 | imbi2d 307 |
. . . . . 6
⊢ (a = 0c → ((n ∈ Nn → (a
≤c n
∨ n ≤c a)) ↔ (n
∈ Nn →
(0c ≤c n
∨ n
≤c 0c)))) |
32 | | breq1 4642 |
. . . . . . . 8
⊢ (a = m →
(a ≤c n ↔ m
≤c n)) |
33 | | breq2 4643 |
. . . . . . . 8
⊢ (a = m →
(n ≤c a ↔ n
≤c m)) |
34 | 32, 33 | orbi12d 690 |
. . . . . . 7
⊢ (a = m →
((a ≤c n ∨ n ≤c a) ↔ (m
≤c n
∨ n ≤c m))) |
35 | 34 | imbi2d 307 |
. . . . . 6
⊢ (a = m →
((n ∈
Nn → (a
≤c n
∨ n ≤c a)) ↔ (n
∈ Nn →
(m ≤c n ∨ n ≤c m)))) |
36 | | breq1 4642 |
. . . . . . . 8
⊢ (a = (m
+c 1c) → (a ≤c n ↔ (m
+c 1c) ≤c n)) |
37 | | breq2 4643 |
. . . . . . . 8
⊢ (a = (m
+c 1c) → (n ≤c a ↔ n
≤c (m +c
1c))) |
38 | 36, 37 | orbi12d 690 |
. . . . . . 7
⊢ (a = (m
+c 1c) → ((a ≤c n ∨ n ≤c a) ↔ ((m
+c 1c) ≤c n ∨ n ≤c (m +c
1c)))) |
39 | 38 | imbi2d 307 |
. . . . . 6
⊢ (a = (m
+c 1c) → ((n ∈ Nn → (a
≤c n
∨ n ≤c a)) ↔ (n
∈ Nn →
((m +c
1c) ≤c n
∨ n
≤c (m +c
1c))))) |
40 | | breq1 4642 |
. . . . . . . 8
⊢ (a = A →
(a ≤c n ↔ A
≤c n)) |
41 | | breq2 4643 |
. . . . . . . 8
⊢ (a = A →
(n ≤c a ↔ n
≤c A)) |
42 | 40, 41 | orbi12d 690 |
. . . . . . 7
⊢ (a = A →
((a ≤c n ∨ n ≤c a) ↔ (A
≤c n
∨ n ≤c A))) |
43 | 42 | imbi2d 307 |
. . . . . 6
⊢ (a = A →
((n ∈
Nn → (a
≤c n
∨ n ≤c a)) ↔ (n
∈ Nn →
(A ≤c n ∨ n ≤c A)))) |
44 | | nnnc 6146 |
. . . . . . . 8
⊢ (n ∈ Nn → n ∈ NC
) |
45 | | le0nc 6200 |
. . . . . . . 8
⊢ (n ∈ NC → 0c ≤c n) |
46 | 44, 45 | syl 15 |
. . . . . . 7
⊢ (n ∈ Nn → 0c ≤c n) |
47 | | orc 374 |
. . . . . . 7
⊢
(0c ≤c n → (0c ≤c
n ∨
n ≤c
0c)) |
48 | 46, 47 | syl 15 |
. . . . . 6
⊢ (n ∈ Nn → (0c ≤c
n ∨
n ≤c
0c)) |
49 | | nnnc 6146 |
. . . . . . . . 9
⊢ (m ∈ Nn → m ∈ NC
) |
50 | | dflec2 6210 |
. . . . . . . . . . 11
⊢ ((m ∈ NC ∧ n ∈ NC ) → (m
≤c n ↔ ∃p ∈ NC n = (m
+c p))) |
51 | | nc0le1 6216 |
. . . . . . . . . . . . . . . . . 18
⊢ (p ∈ NC → (p =
0c ∨ 1c
≤c p)) |
52 | | 1cnc 6139 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
1c ∈ NC |
53 | | le0nc 6200 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(1c ∈ NC → 0c ≤c
1c) |
54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
0c ≤c
1c |
55 | | breq1 4642 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (p = 0c → (p ≤c 1c ↔
0c ≤c 1c)) |
56 | 54, 55 | mpbiri 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (p = 0c → p ≤c
1c) |
57 | 56 | orim1i 503 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((p = 0c
∨ 1c ≤c p) → (p
≤c 1c ∨
1c ≤c p)) |
58 | 57 | a1i 10 |
. . . . . . . . . . . . . . . . . 18
⊢ (p ∈ NC → ((p =
0c ∨ 1c
≤c p) → (p ≤c 1c ∨ 1c ≤c p))) |
59 | 51, 58 | mpd 14 |
. . . . . . . . . . . . . . . . 17
⊢ (p ∈ NC → (p
≤c 1c ∨
1c ≤c p)) |
60 | 59 | orcomd 377 |
. . . . . . . . . . . . . . . 16
⊢ (p ∈ NC → (1c ≤c
p ∨
p ≤c
1c)) |
61 | 60 | adantl 452 |
. . . . . . . . . . . . . . 15
⊢ ((m ∈ NC ∧ p ∈ NC ) → (1c ≤c
p ∨
p ≤c
1c)) |
62 | | simpll 730 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ NC ∧ p ∈ NC ) ∧
1c ≤c p)
→ m ∈ NC
) |
63 | 52 | a1i 10 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ NC ∧ p ∈ NC ) ∧
1c ≤c p)
→ 1c ∈ NC ) |
64 | | simplr 731 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ NC ∧ p ∈ NC ) ∧
1c ≤c p)
→ p ∈ NC
) |
65 | | simpr 447 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ NC ∧ p ∈ NC ) ∧
1c ≤c p)
→ 1c ≤c p) |
66 | | leaddc2 6215 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ NC ∧
1c ∈ NC ∧ p ∈ NC ) ∧
1c ≤c p)
→ (m +c
1c) ≤c (m
+c p)) |
67 | 62, 63, 64, 65, 66 | syl31anc 1185 |
. . . . . . . . . . . . . . . . 17
⊢ (((m ∈ NC ∧ p ∈ NC ) ∧
1c ≤c p)
→ (m +c
1c) ≤c (m
+c p)) |
68 | 67 | ex 423 |
. . . . . . . . . . . . . . . 16
⊢ ((m ∈ NC ∧ p ∈ NC ) → (1c ≤c
p → (m +c 1c)
≤c (m +c
p))) |
69 | | simpll 730 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ NC ∧ p ∈ NC ) ∧ p ≤c 1c) →
m ∈ NC ) |
70 | | simplr 731 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ NC ∧ p ∈ NC ) ∧ p ≤c 1c) →
p ∈ NC ) |
71 | 52 | a1i 10 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ NC ∧ p ∈ NC ) ∧ p ≤c 1c) →
1c ∈ NC ) |
72 | | simpr 447 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ NC ∧ p ∈ NC ) ∧ p ≤c 1c) →
p ≤c
1c) |
73 | | leaddc2 6215 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ NC ∧ p ∈ NC ∧
1c ∈ NC ) ∧ p ≤c 1c) →
(m +c p) ≤c (m +c
1c)) |
74 | 69, 70, 71, 72, 73 | syl31anc 1185 |
. . . . . . . . . . . . . . . . 17
⊢ (((m ∈ NC ∧ p ∈ NC ) ∧ p ≤c 1c) →
(m +c p) ≤c (m +c
1c)) |
75 | 74 | ex 423 |
. . . . . . . . . . . . . . . 16
⊢ ((m ∈ NC ∧ p ∈ NC ) → (p
≤c 1c → (m +c p) ≤c (m +c
1c))) |
76 | 68, 75 | orim12d 811 |
. . . . . . . . . . . . . . 15
⊢ ((m ∈ NC ∧ p ∈ NC ) → ((1c ≤c
p ∨
p ≤c 1c)
→ ((m +c
1c) ≤c (m
+c p) ∨ (m
+c p) ≤c
(m +c
1c)))) |
77 | 61, 76 | mpd 14 |
. . . . . . . . . . . . . 14
⊢ ((m ∈ NC ∧ p ∈ NC ) → ((m
+c 1c) ≤c (m +c p) ∨ (m +c p) ≤c (m +c
1c))) |
78 | | breq2 4643 |
. . . . . . . . . . . . . . . . 17
⊢ (n = (m
+c p) → ((m +c 1c)
≤c n ↔ (m +c 1c)
≤c (m +c
p))) |
79 | | breq1 4642 |
. . . . . . . . . . . . . . . . 17
⊢ (n = (m
+c p) → (n ≤c (m +c 1c) ↔
(m +c p) ≤c (m +c
1c))) |
80 | 78, 79 | orbi12d 690 |
. . . . . . . . . . . . . . . 16
⊢ (n = (m
+c p) → (((m +c 1c)
≤c n
∨ n ≤c (m +c 1c)) ↔
((m +c
1c) ≤c (m
+c p) ∨ (m
+c p) ≤c
(m +c
1c)))) |
81 | 80 | biimprd 214 |
. . . . . . . . . . . . . . 15
⊢ (n = (m
+c p) → (((m +c 1c)
≤c (m +c
p) ∨
(m +c p) ≤c (m +c 1c)) →
((m +c
1c) ≤c n
∨ n
≤c (m +c
1c)))) |
82 | 81 | com12 27 |
. . . . . . . . . . . . . 14
⊢ (((m +c 1c)
≤c (m +c
p) ∨
(m +c p) ≤c (m +c 1c)) →
(n = (m
+c p) → ((m +c 1c)
≤c n
∨ n ≤c (m +c
1c)))) |
83 | 77, 82 | syl 15 |
. . . . . . . . . . . . 13
⊢ ((m ∈ NC ∧ p ∈ NC ) → (n =
(m +c p) → ((m
+c 1c) ≤c n ∨ n ≤c (m +c
1c)))) |
84 | 83 | rexlimdva 2738 |
. . . . . . . . . . . 12
⊢ (m ∈ NC → (∃p ∈ NC n = (m +c p) → ((m
+c 1c) ≤c n ∨ n ≤c (m +c
1c)))) |
85 | 84 | adantr 451 |
. . . . . . . . . . 11
⊢ ((m ∈ NC ∧ n ∈ NC ) → (∃p ∈ NC n = (m
+c p) → ((m +c 1c)
≤c n
∨ n ≤c (m +c
1c)))) |
86 | 50, 85 | sylbid 206 |
. . . . . . . . . 10
⊢ ((m ∈ NC ∧ n ∈ NC ) → (m
≤c n → ((m +c 1c)
≤c n
∨ n ≤c (m +c
1c)))) |
87 | | addlecncs 6209 |
. . . . . . . . . . . . . . 15
⊢ ((m ∈ NC ∧
1c ∈ NC ) → m
≤c (m +c
1c)) |
88 | 52, 87 | mpan2 652 |
. . . . . . . . . . . . . 14
⊢ (m ∈ NC → m
≤c (m +c
1c)) |
89 | 88 | adantl 452 |
. . . . . . . . . . . . 13
⊢ ((n ∈ NC ∧ m ∈ NC ) → m
≤c (m +c
1c)) |
90 | | peano2nc 6145 |
. . . . . . . . . . . . . . 15
⊢ (m ∈ NC → (m
+c 1c) ∈
NC ) |
91 | 90 | adantl 452 |
. . . . . . . . . . . . . 14
⊢ ((n ∈ NC ∧ m ∈ NC ) → (m
+c 1c) ∈
NC ) |
92 | | lectr 6211 |
. . . . . . . . . . . . . 14
⊢ ((n ∈ NC ∧ m ∈ NC ∧ (m +c 1c) ∈ NC ) →
((n ≤c m ∧ m ≤c (m +c 1c)) →
n ≤c (m +c
1c))) |
93 | 91, 92 | mpd3an3 1278 |
. . . . . . . . . . . . 13
⊢ ((n ∈ NC ∧ m ∈ NC ) → ((n
≤c m ∧ m
≤c (m +c
1c)) → n
≤c (m +c
1c))) |
94 | 89, 93 | mpan2d 655 |
. . . . . . . . . . . 12
⊢ ((n ∈ NC ∧ m ∈ NC ) → (n
≤c m → n ≤c (m +c
1c))) |
95 | 94 | ancoms 439 |
. . . . . . . . . . 11
⊢ ((m ∈ NC ∧ n ∈ NC ) → (n
≤c m → n ≤c (m +c
1c))) |
96 | | olc 373 |
. . . . . . . . . . 11
⊢ (n ≤c (m +c 1c) →
((m +c
1c) ≤c n
∨ n
≤c (m +c
1c))) |
97 | 95, 96 | syl6 29 |
. . . . . . . . . 10
⊢ ((m ∈ NC ∧ n ∈ NC ) → (n
≤c m → ((m +c 1c)
≤c n
∨ n ≤c (m +c
1c)))) |
98 | 86, 97 | jaod 369 |
. . . . . . . . 9
⊢ ((m ∈ NC ∧ n ∈ NC ) → ((m
≤c n
∨ n ≤c m) → ((m
+c 1c) ≤c n ∨ n ≤c (m +c
1c)))) |
99 | 49, 44, 98 | syl2an 463 |
. . . . . . . 8
⊢ ((m ∈ Nn ∧ n ∈ Nn ) → ((m
≤c n
∨ n ≤c m) → ((m
+c 1c) ≤c n ∨ n ≤c (m +c
1c)))) |
100 | 99 | ex 423 |
. . . . . . 7
⊢ (m ∈ Nn → (n ∈ Nn → ((m ≤c n ∨ n ≤c m) → ((m
+c 1c) ≤c n ∨ n ≤c (m +c
1c))))) |
101 | 100 | a2d 23 |
. . . . . 6
⊢ (m ∈ Nn → ((n ∈ Nn → (m ≤c n ∨ n ≤c m)) → (n
∈ Nn →
((m +c
1c) ≤c n
∨ n
≤c (m +c
1c))))) |
102 | 27, 31, 35, 39, 43, 48, 101 | finds 4411 |
. . . . 5
⊢ (A ∈ Nn → (n ∈ Nn → (A ≤c n ∨ n ≤c A))) |
103 | 102 | com12 27 |
. . . 4
⊢ (n ∈ Nn → (A ∈ Nn → (A ≤c n ∨ n ≤c A))) |
104 | 4, 103 | vtoclga 2920 |
. . 3
⊢ (B ∈ Nn → (A ∈ Nn → (A ≤c B ∨ B ≤c A))) |
105 | 104 | com12 27 |
. 2
⊢ (A ∈ Nn → (B ∈ Nn → (A ≤c B ∨ B ≤c A))) |
106 | 105 | imp 418 |
1
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (A
≤c B
∨ B ≤c A)) |