Step | Hyp | Ref
| Expression |
1 | | peano2nc 6146 |
. . . 4
⊢ (N ∈ NC → (N
+c 1c) ∈
NC ) |
2 | | dflec2 6211 |
. . . 4
⊢ ((M ∈ NC ∧ (N +c 1c) ∈ NC ) →
(M ≤c (N +c 1c) ↔
∃p ∈ NC (N +c 1c) =
(M +c p))) |
3 | 1, 2 | sylan2 460 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c (N +c
1c) ↔ ∃p ∈ NC (N
+c 1c) = (M +c p))) |
4 | | nc0suc 6218 |
. . . . 5
⊢ (p ∈ NC → (p =
0c ∨ ∃q ∈ NC p = (q
+c 1c))) |
5 | | addceq2 4385 |
. . . . . . . . . 10
⊢ (p = 0c → (M +c p) = (M
+c 0c)) |
6 | | addcid1 4406 |
. . . . . . . . . 10
⊢ (M +c 0c) =
M |
7 | 5, 6 | syl6eq 2401 |
. . . . . . . . 9
⊢ (p = 0c → (M +c p) = M) |
8 | 7 | eqeq2d 2364 |
. . . . . . . 8
⊢ (p = 0c → ((N +c 1c) =
(M +c p) ↔ (N
+c 1c) = M)) |
9 | | olc 373 |
. . . . . . . . 9
⊢ (M = (N
+c 1c) → (M ≤c N ∨ M = (N
+c 1c))) |
10 | 9 | eqcoms 2356 |
. . . . . . . 8
⊢ ((N +c 1c) =
M → (M ≤c N ∨ M = (N
+c 1c))) |
11 | 8, 10 | syl6bi 219 |
. . . . . . 7
⊢ (p = 0c → ((N +c 1c) =
(M +c p) → (M
≤c N
∨ M = (N +c
1c)))) |
12 | 11 | a1i 10 |
. . . . . 6
⊢ ((M ∈ NC ∧ N ∈ NC ) → (p =
0c → ((N
+c 1c) = (M +c p) → (M
≤c N
∨ M = (N +c
1c))))) |
13 | | addceq2 4385 |
. . . . . . . . . . . 12
⊢ (p = (q
+c 1c) → (M +c p) = (M
+c (q
+c 1c))) |
14 | | addcass 4416 |
. . . . . . . . . . . 12
⊢ ((M +c q) +c 1c) =
(M +c (q +c
1c)) |
15 | 13, 14 | syl6eqr 2403 |
. . . . . . . . . . 11
⊢ (p = (q
+c 1c) → (M +c p) = ((M
+c q)
+c 1c)) |
16 | 15 | eqeq2d 2364 |
. . . . . . . . . 10
⊢ (p = (q
+c 1c) → ((N +c 1c) =
(M +c p) ↔ (N
+c 1c) = ((M +c q) +c
1c))) |
17 | 16 | biimpa 470 |
. . . . . . . . 9
⊢ ((p = (q
+c 1c) ∧
(N +c
1c) = (M
+c p)) → (N +c 1c) =
((M +c q) +c
1c)) |
18 | | simplr 731 |
. . . . . . . . . . 11
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → N ∈ NC
) |
19 | | ncaddccl 6145 |
. . . . . . . . . . . 12
⊢ ((M ∈ NC ∧ q ∈ NC ) → (M
+c q) ∈ NC
) |
20 | 19 | adantlr 695 |
. . . . . . . . . . 11
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → (M
+c q) ∈ NC
) |
21 | | peano4nc 6151 |
. . . . . . . . . . 11
⊢ ((N ∈ NC ∧ (M +c q) ∈ NC ) → ((N
+c 1c) = ((M +c q) +c 1c) ↔
N = (M
+c q))) |
22 | 18, 20, 21 | syl2anc 642 |
. . . . . . . . . 10
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → ((N
+c 1c) = ((M +c q) +c 1c) ↔
N = (M
+c q))) |
23 | | addlecncs 6210 |
. . . . . . . . . . . . 13
⊢ ((M ∈ NC ∧ q ∈ NC ) → M
≤c (M +c
q)) |
24 | 23 | adantlr 695 |
. . . . . . . . . . . 12
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → M
≤c (M +c
q)) |
25 | | breq2 4644 |
. . . . . . . . . . . 12
⊢ (N = (M
+c q) → (M ≤c N ↔ M
≤c (M +c
q))) |
26 | 24, 25 | syl5ibrcom 213 |
. . . . . . . . . . 11
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → (N =
(M +c q) → M
≤c N)) |
27 | | orc 374 |
. . . . . . . . . . 11
⊢ (M ≤c N → (M
≤c N
∨ M = (N +c
1c))) |
28 | 26, 27 | syl6 29 |
. . . . . . . . . 10
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → (N =
(M +c q) → (M
≤c N
∨ M = (N +c
1c)))) |
29 | 22, 28 | sylbid 206 |
. . . . . . . . 9
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → ((N
+c 1c) = ((M +c q) +c 1c) →
(M ≤c N ∨ M = (N
+c 1c)))) |
30 | 17, 29 | syl5 28 |
. . . . . . . 8
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → ((p =
(q +c
1c) ∧ (N +c 1c) =
(M +c p)) → (M
≤c N
∨ M = (N +c
1c)))) |
31 | 30 | exp3a 425 |
. . . . . . 7
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → (p =
(q +c
1c) → ((N
+c 1c) = (M +c p) → (M
≤c N
∨ M = (N +c
1c))))) |
32 | 31 | rexlimdva 2739 |
. . . . . 6
⊢ ((M ∈ NC ∧ N ∈ NC ) → (∃q ∈ NC p = (q
+c 1c) → ((N +c 1c) =
(M +c p) → (M
≤c N
∨ M = (N +c
1c))))) |
33 | 12, 32 | jaod 369 |
. . . . 5
⊢ ((M ∈ NC ∧ N ∈ NC ) → ((p =
0c ∨ ∃q ∈ NC p = (q
+c 1c)) → ((N +c 1c) =
(M +c p) → (M
≤c N
∨ M = (N +c
1c))))) |
34 | 4, 33 | syl5 28 |
. . . 4
⊢ ((M ∈ NC ∧ N ∈ NC ) → (p ∈ NC → ((N +c 1c) =
(M +c p) → (M
≤c N
∨ M = (N +c
1c))))) |
35 | 34 | rexlimdv 2738 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (∃p ∈ NC (N +c 1c) =
(M +c p) → (M
≤c N
∨ M = (N +c
1c)))) |
36 | 3, 35 | sylbid 206 |
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c (N +c
1c) → (M
≤c N
∨ M = (N +c
1c)))) |
37 | | 1cnc 6140 |
. . . . . 6
⊢
1c ∈ NC |
38 | | addlecncs 6210 |
. . . . . 6
⊢ ((N ∈ NC ∧
1c ∈ NC ) → N
≤c (N +c
1c)) |
39 | 37, 38 | mpan2 652 |
. . . . 5
⊢ (N ∈ NC → N
≤c (N +c
1c)) |
40 | 39 | adantl 452 |
. . . 4
⊢ ((M ∈ NC ∧ N ∈ NC ) → N
≤c (N +c
1c)) |
41 | 1 | adantl 452 |
. . . . 5
⊢ ((M ∈ NC ∧ N ∈ NC ) → (N
+c 1c) ∈
NC ) |
42 | | lectr 6212 |
. . . . 5
⊢ ((M ∈ NC ∧ N ∈ NC ∧ (N +c 1c) ∈ NC ) →
((M ≤c N ∧ N ≤c (N +c 1c)) →
M ≤c (N +c
1c))) |
43 | 41, 42 | mpd3an3 1278 |
. . . 4
⊢ ((M ∈ NC ∧ N ∈ NC ) → ((M
≤c N ∧ N
≤c (N +c
1c)) → M
≤c (N +c
1c))) |
44 | 40, 43 | mpan2d 655 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N → M ≤c (N +c
1c))) |
45 | | nclecid 6198 |
. . . . . 6
⊢ ((N +c 1c) ∈ NC → (N +c 1c)
≤c (N +c
1c)) |
46 | 1, 45 | syl 15 |
. . . . 5
⊢ (N ∈ NC → (N
+c 1c) ≤c (N +c
1c)) |
47 | 46 | adantl 452 |
. . . 4
⊢ ((M ∈ NC ∧ N ∈ NC ) → (N
+c 1c) ≤c (N +c
1c)) |
48 | | breq1 4643 |
. . . 4
⊢ (M = (N
+c 1c) → (M ≤c (N +c 1c) ↔
(N +c
1c) ≤c (N
+c 1c))) |
49 | 47, 48 | syl5ibrcom 213 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M =
(N +c
1c) → M
≤c (N +c
1c))) |
50 | 44, 49 | jaod 369 |
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) → ((M
≤c N
∨ M = (N +c 1c)) →
M ≤c (N +c
1c))) |
51 | 36, 50 | impbid 183 |
1
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c (N +c
1c) ↔ (M
≤c N
∨ M = (N +c
1c)))) |