New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mprgbir | GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (φ ↔ ∀x ∈ A ψ) |
mprgbir.2 | ⊢ (x ∈ A → ψ) |
Ref | Expression |
---|---|
mprgbir | ⊢ φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (x ∈ A → ψ) | |
2 | 1 | rgen 2680 | . 2 ⊢ ∀x ∈ A ψ |
3 | mprgbir.1 | . 2 ⊢ (φ ↔ ∀x ∈ A ψ) | |
4 | 2, 3 | mpbir 200 | 1 ⊢ φ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 |
This theorem depends on definitions: df-bi 177 df-ral 2620 |
This theorem is referenced by: ss2rabi 3349 rabxm 3574 rabnc 3575 ssintub 3945 pw10 4162 opeq 4620 dmiin 4966 xpnedisj 5514 |
Copyright terms: Public domain | W3C validator |