| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mprgbir | GIF version | ||
| Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| mprgbir.1 | ⊢ (φ ↔ ∀x ∈ A ψ) |
| mprgbir.2 | ⊢ (x ∈ A → ψ) |
| Ref | Expression |
|---|---|
| mprgbir | ⊢ φ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprgbir.2 | . . 3 ⊢ (x ∈ A → ψ) | |
| 2 | 1 | rgen 2680 | . 2 ⊢ ∀x ∈ A ψ |
| 3 | mprgbir.1 | . 2 ⊢ (φ ↔ ∀x ∈ A ψ) | |
| 4 | 2, 3 | mpbir 200 | 1 ⊢ φ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 |
| This theorem depends on definitions: df-bi 177 df-ral 2620 |
| This theorem is referenced by: ss2rabi 3349 rabxm 3574 rabnc 3575 ssintub 3945 pw10 4162 opeq 4620 dmiin 4966 xpnedisj 5514 |
| Copyright terms: Public domain | W3C validator |