New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xpnedisj | GIF version |
Description: Cross products with non-equal singletons are disjoint. (Contributed by SF, 23-Feb-2015.) |
Ref | Expression |
---|---|
xpnedisj.1 | ⊢ C ∈ V |
xpnedisj.2 | ⊢ C ≠ D |
Ref | Expression |
---|---|
xpnedisj | ⊢ ((A × {C}) ∩ (B × {D})) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 3592 | . 2 ⊢ (((A × {C}) ∩ (B × {D})) = ∅ ↔ ∀x ∈ (A × {C}) ¬ x ∈ (B × {D})) | |
2 | elxp2 4803 | . . . 4 ⊢ (x ∈ (A × {C}) ↔ ∃y ∈ A ∃z ∈ {C}x = 〈y, z〉) | |
3 | xpnedisj.1 | . . . . . 6 ⊢ C ∈ V | |
4 | opeq2 4580 | . . . . . . 7 ⊢ (z = C → 〈y, z〉 = 〈y, C〉) | |
5 | 4 | eqeq2d 2364 | . . . . . 6 ⊢ (z = C → (x = 〈y, z〉 ↔ x = 〈y, C〉)) |
6 | 3, 5 | rexsn 3769 | . . . . 5 ⊢ (∃z ∈ {C}x = 〈y, z〉 ↔ x = 〈y, C〉) |
7 | 6 | rexbii 2640 | . . . 4 ⊢ (∃y ∈ A ∃z ∈ {C}x = 〈y, z〉 ↔ ∃y ∈ A x = 〈y, C〉) |
8 | 2, 7 | bitri 240 | . . 3 ⊢ (x ∈ (A × {C}) ↔ ∃y ∈ A x = 〈y, C〉) |
9 | xpnedisj.2 | . . . . . . . 8 ⊢ C ≠ D | |
10 | df-ne 2519 | . . . . . . . 8 ⊢ (C ≠ D ↔ ¬ C = D) | |
11 | 9, 10 | mpbi 199 | . . . . . . 7 ⊢ ¬ C = D |
12 | elsni 3758 | . . . . . . 7 ⊢ (C ∈ {D} → C = D) | |
13 | 11, 12 | mto 167 | . . . . . 6 ⊢ ¬ C ∈ {D} |
14 | 13 | intnan 880 | . . . . 5 ⊢ ¬ (y ∈ B ∧ C ∈ {D}) |
15 | eleq1 2413 | . . . . . 6 ⊢ (x = 〈y, C〉 → (x ∈ (B × {D}) ↔ 〈y, C〉 ∈ (B × {D}))) | |
16 | opelxp 4812 | . . . . . 6 ⊢ (〈y, C〉 ∈ (B × {D}) ↔ (y ∈ B ∧ C ∈ {D})) | |
17 | 15, 16 | syl6bb 252 | . . . . 5 ⊢ (x = 〈y, C〉 → (x ∈ (B × {D}) ↔ (y ∈ B ∧ C ∈ {D}))) |
18 | 14, 17 | mtbiri 294 | . . . 4 ⊢ (x = 〈y, C〉 → ¬ x ∈ (B × {D})) |
19 | 18 | rexlimivw 2735 | . . 3 ⊢ (∃y ∈ A x = 〈y, C〉 → ¬ x ∈ (B × {D})) |
20 | 8, 19 | sylbi 187 | . 2 ⊢ (x ∈ (A × {C}) → ¬ x ∈ (B × {D})) |
21 | 1, 20 | mprgbir 2685 | 1 ⊢ ((A × {C}) ∩ (B × {D})) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∃wrex 2616 Vcvv 2860 ∩ cin 3209 ∅c0 3551 {csn 3738 〈cop 4562 × cxp 4771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-xp 4785 |
This theorem is referenced by: endisj 6052 ncaddccl 6145 tcdi 6165 ce0addcnnul 6180 |
Copyright terms: Public domain | W3C validator |