NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpnedisj GIF version

Theorem xpnedisj 5514
Description: Cross products with non-equal singletons are disjoint. (Contributed by SF, 23-Feb-2015.)
Hypotheses
Ref Expression
xpnedisj.1 C V
xpnedisj.2 CD
Assertion
Ref Expression
xpnedisj ((A × {C}) ∩ (B × {D})) =

Proof of Theorem xpnedisj
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disj 3592 . 2 (((A × {C}) ∩ (B × {D})) = x (A × {C}) ¬ x (B × {D}))
2 elxp2 4803 . . . 4 (x (A × {C}) ↔ y A z {C}x = y, z)
3 xpnedisj.1 . . . . . 6 C V
4 opeq2 4580 . . . . . . 7 (z = Cy, z = y, C)
54eqeq2d 2364 . . . . . 6 (z = C → (x = y, zx = y, C))
63, 5rexsn 3769 . . . . 5 (z {C}x = y, zx = y, C)
76rexbii 2640 . . . 4 (y A z {C}x = y, zy A x = y, C)
82, 7bitri 240 . . 3 (x (A × {C}) ↔ y A x = y, C)
9 xpnedisj.2 . . . . . . . 8 CD
10 df-ne 2519 . . . . . . . 8 (CD ↔ ¬ C = D)
119, 10mpbi 199 . . . . . . 7 ¬ C = D
12 elsni 3758 . . . . . . 7 (C {D} → C = D)
1311, 12mto 167 . . . . . 6 ¬ C {D}
1413intnan 880 . . . . 5 ¬ (y B C {D})
15 eleq1 2413 . . . . . 6 (x = y, C → (x (B × {D}) ↔ y, C (B × {D})))
16 opelxp 4812 . . . . . 6 (y, C (B × {D}) ↔ (y B C {D}))
1715, 16syl6bb 252 . . . . 5 (x = y, C → (x (B × {D}) ↔ (y B C {D})))
1814, 17mtbiri 294 . . . 4 (x = y, C → ¬ x (B × {D}))
1918rexlimivw 2735 . . 3 (y A x = y, C → ¬ x (B × {D}))
208, 19sylbi 187 . 2 (x (A × {C}) → ¬ x (B × {D}))
211, 20mprgbir 2685 1 ((A × {C}) ∩ (B × {D})) =
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wa 358   = wceq 1642   wcel 1710  wne 2517  wrex 2616  Vcvv 2860  cin 3209  c0 3551  {csn 3738  cop 4562   × cxp 4771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-xp 4785
This theorem is referenced by:  endisj  6052  ncaddccl  6145  tcdi  6165  ce0addcnnul  6180
  Copyright terms: Public domain W3C validator