![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > xpnedisj | GIF version |
Description: Cross products with non-equal singletons are disjoint. (Contributed by SF, 23-Feb-2015.) |
Ref | Expression |
---|---|
xpnedisj.1 | ⊢ C ∈ V |
xpnedisj.2 | ⊢ C ≠ D |
Ref | Expression |
---|---|
xpnedisj | ⊢ ((A × {C}) ∩ (B × {D})) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 3591 | . 2 ⊢ (((A × {C}) ∩ (B × {D})) = ∅ ↔ ∀x ∈ (A × {C}) ¬ x ∈ (B × {D})) | |
2 | elxp2 4802 | . . . 4 ⊢ (x ∈ (A × {C}) ↔ ∃y ∈ A ∃z ∈ {C}x = 〈y, z〉) | |
3 | xpnedisj.1 | . . . . . 6 ⊢ C ∈ V | |
4 | opeq2 4579 | . . . . . . 7 ⊢ (z = C → 〈y, z〉 = 〈y, C〉) | |
5 | 4 | eqeq2d 2364 | . . . . . 6 ⊢ (z = C → (x = 〈y, z〉 ↔ x = 〈y, C〉)) |
6 | 3, 5 | rexsn 3768 | . . . . 5 ⊢ (∃z ∈ {C}x = 〈y, z〉 ↔ x = 〈y, C〉) |
7 | 6 | rexbii 2639 | . . . 4 ⊢ (∃y ∈ A ∃z ∈ {C}x = 〈y, z〉 ↔ ∃y ∈ A x = 〈y, C〉) |
8 | 2, 7 | bitri 240 | . . 3 ⊢ (x ∈ (A × {C}) ↔ ∃y ∈ A x = 〈y, C〉) |
9 | xpnedisj.2 | . . . . . . . 8 ⊢ C ≠ D | |
10 | df-ne 2518 | . . . . . . . 8 ⊢ (C ≠ D ↔ ¬ C = D) | |
11 | 9, 10 | mpbi 199 | . . . . . . 7 ⊢ ¬ C = D |
12 | elsni 3757 | . . . . . . 7 ⊢ (C ∈ {D} → C = D) | |
13 | 11, 12 | mto 167 | . . . . . 6 ⊢ ¬ C ∈ {D} |
14 | 13 | intnan 880 | . . . . 5 ⊢ ¬ (y ∈ B ∧ C ∈ {D}) |
15 | eleq1 2413 | . . . . . 6 ⊢ (x = 〈y, C〉 → (x ∈ (B × {D}) ↔ 〈y, C〉 ∈ (B × {D}))) | |
16 | opelxp 4811 | . . . . . 6 ⊢ (〈y, C〉 ∈ (B × {D}) ↔ (y ∈ B ∧ C ∈ {D})) | |
17 | 15, 16 | syl6bb 252 | . . . . 5 ⊢ (x = 〈y, C〉 → (x ∈ (B × {D}) ↔ (y ∈ B ∧ C ∈ {D}))) |
18 | 14, 17 | mtbiri 294 | . . . 4 ⊢ (x = 〈y, C〉 → ¬ x ∈ (B × {D})) |
19 | 18 | rexlimivw 2734 | . . 3 ⊢ (∃y ∈ A x = 〈y, C〉 → ¬ x ∈ (B × {D})) |
20 | 8, 19 | sylbi 187 | . 2 ⊢ (x ∈ (A × {C}) → ¬ x ∈ (B × {D})) |
21 | 1, 20 | mprgbir 2684 | 1 ⊢ ((A × {C}) ∩ (B × {D})) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2516 ∃wrex 2615 Vcvv 2859 ∩ cin 3208 ∅c0 3550 {csn 3737 〈cop 4561 × cxp 4770 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-xp 4784 |
This theorem is referenced by: endisj 6051 ncaddccl 6144 tcdi 6164 ce0addcnnul 6179 |
Copyright terms: Public domain | W3C validator |