New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ss2rabi GIF version

Theorem ss2rabi 3348
 Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
ss2rabi.1 (x A → (φψ))
Assertion
Ref Expression
ss2rabi {x A φ} {x A ψ}

Proof of Theorem ss2rabi
StepHypRef Expression
1 ss2rab 3342 . 2 ({x A φ} {x A ψ} ↔ x A (φψ))
2 ss2rabi.1 . 2 (x A → (φψ))
31, 2mprgbir 2684 1 {x A φ} {x A ψ}
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1710  {crab 2618   ⊆ wss 3257 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-rab 2623  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator