NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pw10 GIF version

Theorem pw10 4162
Description: Compute the unit power class of . (Contributed by SF, 22-Jan-2015.)
Assertion
Ref Expression
pw10 1 =

Proof of Theorem pw10
StepHypRef Expression
1 df-pw1 4138 . 2 1 = ( ∩ 1c)
2 pw0 4161 . . 3 = {}
32ineq1i 3454 . 2 ( ∩ 1c) = ({} ∩ 1c)
4 disj 3592 . . 3 (({} ∩ 1c) = x {} ¬ x 1c)
5 0nel1c 4160 . . . 4 ¬ 1c
6 elsn 3749 . . . . 5 (x {} ↔ x = )
7 eleq1 2413 . . . . 5 (x = → (x 1c 1c))
86, 7sylbi 187 . . . 4 (x {} → (x 1c 1c))
95, 8mtbiri 294 . . 3 (x {} → ¬ x 1c)
104, 9mprgbir 2685 . 2 ({} ∩ 1c) =
111, 3, 103eqtri 2377 1 1 =
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   = wceq 1642   wcel 1710  cin 3209  c0 3551  cpw 3723  {csn 3738  1cc1c 4135  1cpw1 4136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-1c 4137  df-pw1 4138
This theorem is referenced by:  pw10b  4167  ncfinraise  4482  tfindi  4497  tfin0c  4498  sfin01  4529  tc0c  6164  tcdi  6165  ce0nnul  6178  ce0addcnnul  6180  ce0nn  6181  ce0nulnc  6185  ce0  6191
  Copyright terms: Public domain W3C validator