New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pw10 | GIF version |
Description: Compute the unit power class of ∅. (Contributed by SF, 22-Jan-2015.) |
Ref | Expression |
---|---|
pw10 | ⊢ ℘1∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw1 4138 | . 2 ⊢ ℘1∅ = (℘∅ ∩ 1c) | |
2 | pw0 4161 | . . 3 ⊢ ℘∅ = {∅} | |
3 | 2 | ineq1i 3454 | . 2 ⊢ (℘∅ ∩ 1c) = ({∅} ∩ 1c) |
4 | disj 3592 | . . 3 ⊢ (({∅} ∩ 1c) = ∅ ↔ ∀x ∈ {∅} ¬ x ∈ 1c) | |
5 | 0nel1c 4160 | . . . 4 ⊢ ¬ ∅ ∈ 1c | |
6 | elsn 3749 | . . . . 5 ⊢ (x ∈ {∅} ↔ x = ∅) | |
7 | eleq1 2413 | . . . . 5 ⊢ (x = ∅ → (x ∈ 1c ↔ ∅ ∈ 1c)) | |
8 | 6, 7 | sylbi 187 | . . . 4 ⊢ (x ∈ {∅} → (x ∈ 1c ↔ ∅ ∈ 1c)) |
9 | 5, 8 | mtbiri 294 | . . 3 ⊢ (x ∈ {∅} → ¬ x ∈ 1c) |
10 | 4, 9 | mprgbir 2685 | . 2 ⊢ ({∅} ∩ 1c) = ∅ |
11 | 1, 3, 10 | 3eqtri 2377 | 1 ⊢ ℘1∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∩ cin 3209 ∅c0 3551 ℘cpw 3723 {csn 3738 1cc1c 4135 ℘1cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 |
This theorem is referenced by: pw10b 4167 ncfinraise 4482 tfindi 4497 tfin0c 4498 sfin01 4529 tc0c 6164 tcdi 6165 ce0nnul 6178 ce0addcnnul 6180 ce0nn 6181 ce0nulnc 6185 ce0 6191 |
Copyright terms: Public domain | W3C validator |