New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pw10 | GIF version |
Description: Compute the unit power class of ∅ (Contributed by SF, 22-Jan-2015.) |
Ref | Expression |
---|---|
pw10 | ⊢ ℘1∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw1 4137 | . 2 ⊢ ℘1∅ = (℘∅ ∩ 1c) | |
2 | pw0 4160 | . . 3 ⊢ ℘∅ = {∅} | |
3 | 2 | ineq1i 3453 | . 2 ⊢ (℘∅ ∩ 1c) = ({∅} ∩ 1c) |
4 | disj 3591 | . . 3 ⊢ (({∅} ∩ 1c) = ∅ ↔ ∀x ∈ {∅} ¬ x ∈ 1c) | |
5 | 0nel1c 4159 | . . . 4 ⊢ ¬ ∅ ∈ 1c | |
6 | elsn 3748 | . . . . 5 ⊢ (x ∈ {∅} ↔ x = ∅) | |
7 | eleq1 2413 | . . . . 5 ⊢ (x = ∅ → (x ∈ 1c ↔ ∅ ∈ 1c)) | |
8 | 6, 7 | sylbi 187 | . . . 4 ⊢ (x ∈ {∅} → (x ∈ 1c ↔ ∅ ∈ 1c)) |
9 | 5, 8 | mtbiri 294 | . . 3 ⊢ (x ∈ {∅} → ¬ x ∈ 1c) |
10 | 4, 9 | mprgbir 2684 | . 2 ⊢ ({∅} ∩ 1c) = ∅ |
11 | 1, 3, 10 | 3eqtri 2377 | 1 ⊢ ℘1∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∩ cin 3208 ∅c0 3550 ℘cpw 3722 {csn 3737 1cc1c 4134 ℘1cpw1 4135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-1c 4136 df-pw1 4137 |
This theorem is referenced by: pw10b 4166 ncfinraise 4481 tfindi 4496 tfin0c 4497 sfin01 4528 tc0c 6163 tcdi 6164 ce0nnul 6177 ce0addcnnul 6179 ce0nn 6180 ce0nulnc 6184 ce0 6190 |
Copyright terms: Public domain | W3C validator |