NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpt2eq3ia GIF version

Theorem mpt2eq3ia 5671
Description: An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpt2eq3ia.1 ((x A y B) → C = D)
Assertion
Ref Expression
mpt2eq3ia (x A, y B C) = (x A, y B D)

Proof of Theorem mpt2eq3ia
StepHypRef Expression
1 mpt2eq3ia.1 . . . 4 ((x A y B) → C = D)
213adant1 973 . . 3 (( ⊤ x A y B) → C = D)
32mpt2eq3dva 5670 . 2 ( ⊤ → (x A, y B C) = (x A, y B D))
43trud 1323 1 (x A, y B C) = (x A, y B D)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wtru 1316   = wceq 1642   wcel 1710   cmpt2 5654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-oprab 5529  df-mpt2 5655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator