New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpt2eq3dva | GIF version |
Description: Slightly more general equality inference for the maps to notation. (Contributed by set.mm contributors, 17-Oct-2013.) (Revised by set.mm contributors, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpt2eq3dva.1 | ⊢ ((φ ∧ x ∈ A ∧ y ∈ B) → C = D) |
Ref | Expression |
---|---|
mpt2eq3dva | ⊢ (φ → (x ∈ A, y ∈ B ↦ C) = (x ∈ A, y ∈ B ↦ D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2eq3dva.1 | . . . . . 6 ⊢ ((φ ∧ x ∈ A ∧ y ∈ B) → C = D) | |
2 | 1 | 3expb 1152 | . . . . 5 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → C = D) |
3 | 2 | eqeq2d 2364 | . . . 4 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (z = C ↔ z = D)) |
4 | 3 | pm5.32da 622 | . . 3 ⊢ (φ → (((x ∈ A ∧ y ∈ B) ∧ z = C) ↔ ((x ∈ A ∧ y ∈ B) ∧ z = D))) |
5 | 4 | oprabbidv 5565 | . 2 ⊢ (φ → {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = D)}) |
6 | df-mpt2 5655 | . 2 ⊢ (x ∈ A, y ∈ B ↦ C) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} | |
7 | df-mpt2 5655 | . 2 ⊢ (x ∈ A, y ∈ B ↦ D) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = D)} | |
8 | 5, 6, 7 | 3eqtr4g 2410 | 1 ⊢ (φ → (x ∈ A, y ∈ B ↦ C) = (x ∈ A, y ∈ B ↦ D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 {coprab 5528 ↦ cmpt2 5654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-oprab 5529 df-mpt2 5655 |
This theorem is referenced by: mpt2eq3ia 5671 |
Copyright terms: Public domain | W3C validator |