New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3adant1 | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
3adant.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
3adant1 | ⊢ ((θ ∧ φ ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 954 | . 2 ⊢ ((θ ∧ φ ∧ ψ) → (φ ∧ ψ)) | |
2 | 3adant.1 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
3 | 1, 2 | syl 15 | 1 ⊢ ((θ ∧ φ ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3ad2ant2 977 3ad2ant3 978 rsp2e 2678 sbciegft 3077 otkelins2kg 4254 otkelins3kg 4255 nnsucelr 4429 nndisjeq 4430 leltfintr 4459 ltfintr 4460 ncfinlower 4484 tfin11 4494 sfindbl 4531 vfinncvntnn 4549 fununiq 5518 mpt2eq3ia 5671 clos1basesuc 5883 enadj 6061 lectr 6212 leltctr 6213 lecponc 6214 taddc 6230 letc 6232 ce2le 6234 addcdi 6251 addcdir 6252 ncslemuc 6256 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |