NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3adant1 GIF version

Theorem 3adant1 973
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995.)
Hypothesis
Ref Expression
3adant.1 ((φ ψ) → χ)
Assertion
Ref Expression
3adant1 ((θ φ ψ) → χ)

Proof of Theorem 3adant1
StepHypRef Expression
1 3simpc 954 . 2 ((θ φ ψ) → (φ ψ))
2 3adant.1 . 2 ((φ ψ) → χ)
31, 2syl 15 1 ((θ φ ψ) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3ad2ant2  977  3ad2ant3  978  rsp2e  2678  sbciegft  3077  otkelins2kg  4254  otkelins3kg  4255  nnsucelr  4429  nndisjeq  4430  leltfintr  4459  ltfintr  4460  ncfinlower  4484  tfin11  4494  sfindbl  4531  vfinncvntnn  4549  fununiq  5518  mpt2eq3ia  5671  clos1basesuc  5883  enadj  6061  lectr  6212  leltctr  6213  lecponc  6214  taddc  6230  letc  6232  ce2le  6234  addcdi  6251  addcdir  6252  ncslemuc  6256  nchoicelem17  6306
  Copyright terms: Public domain W3C validator