New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpteq12 | GIF version |
Description: An equality theorem for the maps to notation. (Contributed by set.mm contributors, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12 | ⊢ ((A = C ∧ ∀x ∈ A B = D) → (x ∈ A ↦ B) = (x ∈ C ↦ D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1616 | . 2 ⊢ (A = C → ∀x A = C) | |
2 | mpteq12f 5656 | . 2 ⊢ ((∀x A = C ∧ ∀x ∈ A B = D) → (x ∈ A ↦ B) = (x ∈ C ↦ D)) | |
3 | 1, 2 | sylan 457 | 1 ⊢ ((A = C ∧ ∀x ∈ A B = D) → (x ∈ A ↦ B) = (x ∈ C ↦ D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 = wceq 1642 ∀wral 2615 ↦ cmpt 5652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-ral 2620 df-opab 4624 df-mpt 5653 |
This theorem is referenced by: mpteq1 5659 |
Copyright terms: Public domain | W3C validator |