| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mpteq2da | GIF version | ||
| Description: Slightly more general equality inference for the maps to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2da.1 | ⊢ Ⅎxφ |
| mpteq2da.2 | ⊢ ((φ ∧ x ∈ A) → B = C) |
| Ref | Expression |
|---|---|
| mpteq2da | ⊢ (φ → (x ∈ A ↦ B) = (x ∈ A ↦ C)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2353 | . . 3 ⊢ A = A | |
| 2 | 1 | ax-gen 1546 | . 2 ⊢ ∀x A = A |
| 3 | mpteq2da.1 | . . 3 ⊢ Ⅎxφ | |
| 4 | mpteq2da.2 | . . . 4 ⊢ ((φ ∧ x ∈ A) → B = C) | |
| 5 | 4 | ex 423 | . . 3 ⊢ (φ → (x ∈ A → B = C)) |
| 6 | 3, 5 | ralrimi 2696 | . 2 ⊢ (φ → ∀x ∈ A B = C) |
| 7 | mpteq12f 5656 | . 2 ⊢ ((∀x A = A ∧ ∀x ∈ A B = C) → (x ∈ A ↦ B) = (x ∈ A ↦ C)) | |
| 8 | 2, 6, 7 | sylancr 644 | 1 ⊢ (φ → (x ∈ A ↦ B) = (x ∈ A ↦ C)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ↦ cmpt 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-ral 2620 df-opab 4624 df-mpt 5653 |
| This theorem is referenced by: mpteq2dva 5668 |
| Copyright terms: Public domain | W3C validator |