NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpteq2dv GIF version

Theorem mpteq2dv 5669
Description: An equality inference for the maps to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
mpteq2dv.1 (φB = C)
Assertion
Ref Expression
mpteq2dv (φ → (x A B) = (x A C))
Distinct variable group:   φ,x
Allowed substitution hints:   A(x)   B(x)   C(x)

Proof of Theorem mpteq2dv
StepHypRef Expression
1 mpteq2dv.1 . . 3 (φB = C)
21adantr 451 . 2 ((φ x A) → B = C)
32mpteq2dva 5668 1 (φ → (x A B) = (x A C))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710   cmpt 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-ral 2620  df-opab 4624  df-mpt 5653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator