NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpteq2ia GIF version

Theorem mpteq2ia 5660
Description: An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2ia.1 (x AB = C)
Assertion
Ref Expression
mpteq2ia (x A B) = (x A C)

Proof of Theorem mpteq2ia
StepHypRef Expression
1 eqid 2353 . . 3 A = A
21ax-gen 1546 . 2 x A = A
3 mpteq2ia.1 . . 3 (x AB = C)
43rgen 2680 . 2 x A B = C
5 mpteq12f 5656 . 2 ((x A = A x A B = C) → (x A B) = (x A C))
62, 4, 5mp2an 653 1 (x A B) = (x A C)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   = wceq 1642   wcel 1710  wral 2615   cmpt 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-ral 2620  df-opab 4624  df-mpt 5653
This theorem is referenced by:  mpteq2i  5661
  Copyright terms: Public domain W3C validator