New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqid | GIF version |
Description: Law of identity
(reflexivity of class equality). Theorem 6.4 of [Quine]
p. 41.
This law is thought to have originated with Aristotle (Metaphysics, Zeta, 17, 1041 a, 10-20: "Therefore, inquiring why a thing is itself, it's inquiring nothing; ... saying that the thing is itself constitutes the sole reasoning and the sole cause, in every case, to the question of why the man is man or the musician musician."). (Thanks to Stefan Allan and Benoît Jubin for this information.) (Contributed by NM, 5-Aug-1993.) (Revised by Benoît Jubin, 14-Oct-2017.) |
Ref | Expression |
---|---|
eqid | ⊢ A = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 227 | . 2 ⊢ (x ∈ A ↔ x ∈ A) | |
2 | 1 | eqriv 2350 | 1 ⊢ A = A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-cleq 2346 |
This theorem is referenced by: eqidd 2354 neirr 2521 vex 2862 reu6 3025 sbsbc 3050 sbceqal 3097 dfnul2 3552 dfnul3 3553 snidg 3758 prid1g 3825 tpid1 3829 tpid2 3830 tpid3 3832 int0 3940 dfiin2g 4000 opkth1g 4130 snel1c 4140 opkabssvvk 4208 eladdci 4399 nnc0suc 4412 elsuci 4414 nulel0c 4422 0fin 4423 nnsucelr 4428 lefinaddc 4450 tfinnul 4491 opabbii 4626 syl5eqbr 4672 syl5eqbrr 4673 syl6breq 4678 ididg 4871 xpcan 5057 xpcan2 5058 funfn 5136 dffn4 5275 f1orn 5296 f1o00 5317 tz6.12i 5348 dffn5 5363 funfv 5375 fvopab4g 5388 funfvop 5400 funiunfv 5467 f1elima 5474 1stfo 5505 2ndfo 5506 swapf1o 5511 opfv1st 5514 opfv2nd 5515 oprabbii 5565 ov2ag 5598 ov6g 5600 mpteq2ia 5659 mpt2eq12 5662 mpteq2da 5666 dmmptg 5684 fvmptd 5702 fvmptnf 5723 f1od 5726 op1st2nd 5790 clos1basesucg 5884 dfnnc3 5885 ecelqsg 5979 elqsn0 5993 qsdisj 5995 ecoptocl 5996 enmap2 6068 enmap1 6074 enprmaplem6 6081 enprmap 6082 nenpw1pw 6086 enpw 6087 nulnnc 6118 ncspw1eu 6159 pw1eltc 6162 ce2 6192 ce2ncpw11c 6194 sbthlem2 6204 sbthlem3 6205 tce2 6236 spacssnc 6284 spacid 6285 spaccl 6286 spacind 6287 nchoicelem3 6291 frecxp 6314 frecxpg 6315 dmfrec 6316 fnfreclem2 6318 fnfreclem3 6319 frecsuc 6322 dmsnfn 6327 scancan 6331 |
Copyright terms: Public domain | W3C validator |