NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  disjpss GIF version

Theorem disjpss 3602
Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
disjpss (((AB) = B) → A ⊊ (AB))

Proof of Theorem disjpss
StepHypRef Expression
1 ssid 3291 . . . . . . . 8 B B
21biantru 491 . . . . . . 7 (B A ↔ (B A B B))
3 ssin 3478 . . . . . . 7 ((B A B B) ↔ B (AB))
42, 3bitri 240 . . . . . 6 (B AB (AB))
5 sseq2 3294 . . . . . 6 ((AB) = → (B (AB) ↔ B ))
64, 5syl5bb 248 . . . . 5 ((AB) = → (B AB ))
7 ss0 3582 . . . . 5 (B B = )
86, 7syl6bi 219 . . . 4 ((AB) = → (B AB = ))
98necon3ad 2553 . . 3 ((AB) = → (B → ¬ B A))
109imp 418 . 2 (((AB) = B) → ¬ B A)
11 nsspssun 3489 . . 3 B AA ⊊ (BA))
12 uncom 3409 . . . 4 (BA) = (AB)
1312psseq2i 3360 . . 3 (A ⊊ (BA) ↔ A ⊊ (AB))
1411, 13bitri 240 . 2 B AA ⊊ (AB))
1510, 14sylib 188 1 (((AB) = B) → A ⊊ (AB))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358   = wceq 1642  wne 2517  cun 3208  cin 3209   wss 3258  wpss 3259  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-pss 3262  df-nul 3552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator