New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabn0 | GIF version |
Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) |
Ref | Expression |
---|---|
rabn0 | ⊢ ({x ∈ A ∣ φ} ≠ ∅ ↔ ∃x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0 3569 | . 2 ⊢ ({x ∣ (x ∈ A ∧ φ)} ≠ ∅ ↔ ∃x(x ∈ A ∧ φ)) | |
2 | df-rab 2624 | . . 3 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
3 | 2 | neeq1i 2527 | . 2 ⊢ ({x ∈ A ∣ φ} ≠ ∅ ↔ {x ∣ (x ∈ A ∧ φ)} ≠ ∅) |
4 | df-rex 2621 | . 2 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
5 | 1, 3, 4 | 3bitr4i 268 | 1 ⊢ ({x ∈ A ∣ φ} ≠ ∅ ↔ ∃x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 {cab 2339 ≠ wne 2517 ∃wrex 2616 {crab 2619 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: rabeq0 3573 |
Copyright terms: Public domain | W3C validator |