NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rabn0 GIF version

Theorem rabn0 3571
Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.)
Assertion
Ref Expression
rabn0 ({x A φ} ≠ x A φ)

Proof of Theorem rabn0
StepHypRef Expression
1 abn0 3569 . 2 ({x (x A φ)} ≠ x(x A φ))
2 df-rab 2624 . . 3 {x A φ} = {x (x A φ)}
32neeq1i 2527 . 2 ({x A φ} ≠ ↔ {x (x A φ)} ≠ )
4 df-rex 2621 . 2 (x A φx(x A φ))
51, 3, 43bitr4i 268 1 ({x A φ} ≠ x A φ)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   wcel 1710  {cab 2339  wne 2517  wrex 2616  {crab 2619  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552
This theorem is referenced by:  rabeq0  3573
  Copyright terms: Public domain W3C validator