NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfbii GIF version

Theorem nfbii 1569
Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfbii.1 (φψ)
Assertion
Ref Expression
nfbii (Ⅎxφ ↔ Ⅎxψ)

Proof of Theorem nfbii
StepHypRef Expression
1 nfbii.1 . . . 4 (φψ)
21albii 1566 . . . 4 (xφxψ)
31, 2imbi12i 316 . . 3 ((φxφ) ↔ (ψxψ))
43albii 1566 . 2 (x(φxφ) ↔ x(ψxψ))
5 df-nf 1545 . 2 (Ⅎxφx(φxφ))
6 df-nf 1545 . 2 (Ⅎxψx(ψxψ))
74, 5, 63bitr4i 268 1 (Ⅎxφ ↔ Ⅎxψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-nf 1545
This theorem is referenced by:  nfxfr  1570  nfxfrd  1571  nfceqi  2486  dfnfc2  3910
  Copyright terms: Public domain W3C validator