New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfbii | GIF version |
Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
nfbii | ⊢ (Ⅎxφ ↔ Ⅎxψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbii.1 | . . . 4 ⊢ (φ ↔ ψ) | |
2 | 1 | albii 1566 | . . . 4 ⊢ (∀xφ ↔ ∀xψ) |
3 | 1, 2 | imbi12i 316 | . . 3 ⊢ ((φ → ∀xφ) ↔ (ψ → ∀xψ)) |
4 | 3 | albii 1566 | . 2 ⊢ (∀x(φ → ∀xφ) ↔ ∀x(ψ → ∀xψ)) |
5 | df-nf 1545 | . 2 ⊢ (Ⅎxφ ↔ ∀x(φ → ∀xφ)) | |
6 | df-nf 1545 | . 2 ⊢ (Ⅎxψ ↔ ∀x(ψ → ∀xψ)) | |
7 | 4, 5, 6 | 3bitr4i 268 | 1 ⊢ (Ⅎxφ ↔ Ⅎxψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-nf 1545 |
This theorem is referenced by: nfxfr 1570 nfxfrd 1571 nfceqi 2486 dfnfc2 3910 |
Copyright terms: Public domain | W3C validator |