Proof of Theorem dfnfc2
Step | Hyp | Ref
| Expression |
1 | | nfcvd 2491 |
. . . 4
⊢
(ℲxA → Ⅎxy) |
2 | | id 19 |
. . . 4
⊢
(ℲxA → ℲxA) |
3 | 1, 2 | nfeqd 2504 |
. . 3
⊢
(ℲxA → Ⅎx y = A) |
4 | 3 | alrimiv 1631 |
. 2
⊢
(ℲxA → ∀yℲx
y = A) |
5 | | simpr 447 |
. . . . . 6
⊢ ((∀x A ∈ V ∧ ∀yℲx
y = A)
→ ∀yℲx
y = A) |
6 | | df-nfc 2479 |
. . . . . . 7
⊢
(Ⅎx{A} ↔ ∀yℲx
y ∈
{A}) |
7 | | elsn 3749 |
. . . . . . . . 9
⊢ (y ∈ {A} ↔ y =
A) |
8 | 7 | nfbii 1569 |
. . . . . . . 8
⊢ (Ⅎx y ∈ {A} ↔
Ⅎx y = A) |
9 | 8 | albii 1566 |
. . . . . . 7
⊢ (∀yℲx
y ∈
{A} ↔ ∀yℲx
y = A) |
10 | 6, 9 | bitri 240 |
. . . . . 6
⊢
(Ⅎx{A} ↔ ∀yℲx
y = A) |
11 | 5, 10 | sylibr 203 |
. . . . 5
⊢ ((∀x A ∈ V ∧ ∀yℲx
y = A)
→ Ⅎx{A}) |
12 | 11 | nfunid 3899 |
. . . 4
⊢ ((∀x A ∈ V ∧ ∀yℲx
y = A)
→ Ⅎx∪{A}) |
13 | | nfa1 1788 |
. . . . . 6
⊢ Ⅎx∀x A ∈ V |
14 | | nfnf1 1790 |
. . . . . . 7
⊢ ℲxℲx
y = A |
15 | 14 | nfal 1842 |
. . . . . 6
⊢ Ⅎx∀yℲx
y = A |
16 | 13, 15 | nfan 1824 |
. . . . 5
⊢ Ⅎx(∀x A ∈ V ∧ ∀yℲx
y = A) |
17 | | unisng 3909 |
. . . . . . 7
⊢ (A ∈ V → ∪{A} = A) |
18 | 17 | sps 1754 |
. . . . . 6
⊢ (∀x A ∈ V → ∪{A} = A) |
19 | 18 | adantr 451 |
. . . . 5
⊢ ((∀x A ∈ V ∧ ∀yℲx
y = A)
→ ∪{A} =
A) |
20 | 16, 19 | nfceqdf 2489 |
. . . 4
⊢ ((∀x A ∈ V ∧ ∀yℲx
y = A)
→ (Ⅎx∪{A} ↔
ℲxA)) |
21 | 12, 20 | mpbid 201 |
. . 3
⊢ ((∀x A ∈ V ∧ ∀yℲx
y = A)
→ ℲxA) |
22 | 21 | ex 423 |
. 2
⊢ (∀x A ∈ V → (∀yℲx
y = A
→ ℲxA)) |
23 | 4, 22 | impbid2 195 |
1
⊢ (∀x A ∈ V → (ℲxA ↔ ∀yℲx
y = A)) |