New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfceqi | GIF version |
Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 | ⊢ A = B |
Ref | Expression |
---|---|
nfceqi | ⊢ (ℲxA ↔ ℲxB) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfceqi.1 | . . . . 5 ⊢ A = B | |
2 | 1 | eleq2i 2417 | . . . 4 ⊢ (y ∈ A ↔ y ∈ B) |
3 | 2 | nfbii 1569 | . . 3 ⊢ (Ⅎx y ∈ A ↔ Ⅎx y ∈ B) |
4 | 3 | albii 1566 | . 2 ⊢ (∀yℲx y ∈ A ↔ ∀yℲx y ∈ B) |
5 | df-nfc 2479 | . 2 ⊢ (ℲxA ↔ ∀yℲx y ∈ A) | |
6 | df-nfc 2479 | . 2 ⊢ (ℲxB ↔ ∀yℲx y ∈ B) | |
7 | 4, 5, 6 | 3bitr4i 268 | 1 ⊢ (ℲxA ↔ ℲxB) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: nfcxfr 2487 nfcxfrd 2488 |
Copyright terms: Public domain | W3C validator |