NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfxfrd GIF version

Theorem nfxfrd 1571
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfbii.1 (φψ)
nfxfrd.2 (χ → Ⅎxψ)
Assertion
Ref Expression
nfxfrd (χ → Ⅎxφ)

Proof of Theorem nfxfrd
StepHypRef Expression
1 nfxfrd.2 . 2 (χ → Ⅎxψ)
2 nfbii.1 . . 3 (φψ)
32nfbii 1569 . 2 (Ⅎxφ ↔ Ⅎxψ)
41, 3sylibr 203 1 (χ → Ⅎxφ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-nf 1545
This theorem is referenced by:  nfand  1822  nf3and  1823  nfbid  1832  nfbidOLD  1833  nfexd  1854  nfexd2  1973  dvelimf  1997  nfeud2  2216  nfmod2  2217  nfeqd  2504  nfeld  2505  nfabd2  2508  nfned  2613  nfneld  2614  nfrald  2666  nfrexd  2667  nfreud  2784  nfrmod  2785  nfsbc1d  3064  nfsbcd  3067  nfbrd  4683
  Copyright terms: Public domain W3C validator