New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfxfrd | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (φ ↔ ψ) |
nfxfrd.2 | ⊢ (χ → Ⅎxψ) |
Ref | Expression |
---|---|
nfxfrd | ⊢ (χ → Ⅎxφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfrd.2 | . 2 ⊢ (χ → Ⅎxψ) | |
2 | nfbii.1 | . . 3 ⊢ (φ ↔ ψ) | |
3 | 2 | nfbii 1569 | . 2 ⊢ (Ⅎxφ ↔ Ⅎxψ) |
4 | 1, 3 | sylibr 203 | 1 ⊢ (χ → Ⅎxφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-nf 1545 |
This theorem is referenced by: nfand 1822 nf3and 1823 nfbid 1832 nfbidOLD 1833 nfexd 1854 nfexd2 1973 dvelimf 1997 nfeud2 2216 nfmod2 2217 nfeqd 2504 nfeld 2505 nfabd2 2508 nfned 2613 nfneld 2614 nfrald 2666 nfrexd 2667 nfreud 2784 nfrmod 2785 nfsbc1d 3064 nfsbcd 3067 nfbrd 4683 |
Copyright terms: Public domain | W3C validator |