New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfcjust | GIF version |
Description: Justification theorem for df-nfc 2478. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfcjust | ⊢ (∀yℲx y ∈ A ↔ ∀zℲx z ∈ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . 3 ⊢ Ⅎx y = z | |
2 | eleq1 2413 | . . 3 ⊢ (y = z → (y ∈ A ↔ z ∈ A)) | |
3 | 1, 2 | nfbidf 1774 | . 2 ⊢ (y = z → (Ⅎx y ∈ A ↔ Ⅎx z ∈ A)) |
4 | 3 | cbvalv 2002 | 1 ⊢ (∀yℲx y ∈ A ↔ ∀zℲx z ∈ A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |