NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfnin GIF version

Theorem nfnin 3229
Description: Hypothesis builder for anti-intersection. (Contributed by SF, 2-Jan-2018.)
Hypotheses
Ref Expression
nfnin.1 xA
nfnin.2 xB
Assertion
Ref Expression
nfnin x(AB)

Proof of Theorem nfnin
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 df-nin 3212 . 2 (AB) = {y (y A y B)}
2 nfnin.1 . . . . 5 xA
32nfel2 2502 . . . 4 x y A
4 nfnin.2 . . . . 5 xB
54nfel2 2502 . . . 4 x y B
63, 5nfnan 1825 . . 3 x(y A y B)
76nfab 2494 . 2 x{y (y A y B)}
81, 7nfcxfr 2487 1 x(AB)
Colors of variables: wff setvar class
Syntax hints:   wnan 1287   wcel 1710  {cab 2339  wnfc 2477  cnin 3205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-nin 3212
This theorem is referenced by:  nfcompl  3230  nfin  3231  nfun  3232
  Copyright terms: Public domain W3C validator